
_TERDISCIPLINARY RESEARCH SCENARIO TESTING

OF EOSDIS

Final Report
Under

NASA Grant NAG5-1961

Covering the period of

February 1998 - August 14, 1999

Prepared by

G.D. Emmitt

Principal Investigator

University of Virginia

Charlottesville, VA 22903

12 November 1999

Overview

During the reporting period, the PI has continued to serve on numerous review panels, task forces and

committees with the goal of providing input and guidance for the EOSDIS program at NASA Headquarters
and NASA GSFC. In addition, the P1 has worked together with personnel at the University of Virginia and
the subcontractor (Simpson Weather Associates (SWA)) to continue to evaluate the latest releases of

various versions of the user interfaces to the EOSDIS. Finally, as part of the subcontract, SWA has created
an on-line HDF tutorial for non-HDF experts, particularly those that will be using EOSDIS and future EOS
data products. A summary of these three activities is provided below.

Participation on EOSDIS Panels and Committees

During the reporting period, the PI has been involved in numerous activities related to preparing for the
EOSDIS for the Terra launch, and planning for the post 2002 era:

• Reviewing prototyping proposals related to IT

• Chairing the EOS Science Data Panel

• Conducting surveys on the needs and interests of the IDS teams

• Participating on the EOSDIS Review Group

• Participating in the NewDIS activities lead by NASA HQ.

• Serving on various ad hoe panels dealing with the EOSDIS and its readiness for operations
• Attending SEC and IWG meetings.

Until recently, ESDIS was responsible for soliciting and awarding funds to develop or evaluate concepts
that would have significant potential for the AM-I platform era, as well as the period of time beyond.
Approximately 20 proposals were reviewed at the request of ESDIS.

In the fall of 1998, the P1 was elected chair of the Science Data Panel. A Panel meeting was held in May,
99 (see Attachment A). The Data Panel's recommendations were forwarded to the ERG that met soon after.

The Data Panel's future is still an issue. However, since it serves the IWG, the Panel will remain active and
will meet when it is deemed necessary.

As part of the descoping and budget cutting associated with EOSDIS, the PI was asked by ESDIS to survey
the IDS teams for their reactions to the proposed OPTION A+. The results of the survey were reported to
the ERG and the SEC. A copy of the survey is included in Attachment B.

The current EOS EDC contract expires in 2002. NASA Headquarters commissioned a study to be chaired

by Martha Maiden. The study was called the NewDIS. The PI was a consultant to the study team and
attended two of the workshops.

During the course of getting the EOSDIS ready for support of the Terra launch, the PI was requested to
serve on several ad hoc review teams. The most recent such team was the board for the Operations
Readiness Review for the Terra/Sage 111 launches.

Evaluation and Tire Kicking of EOSDIS User Interfaces

In response to several of the defined tasks, SWA together with the PI and a student at UVA continued to

evaluate the releases of various versions of the user interfaces to the EOSDIS. In particular, the student and

SWA continued this advanced tire kicking to probe and evaluate the WWW version of the V0-gateway. In

addition, alternate search methods (i.e., individual Data Centers, DAACs, and lntemet search engines)
outside of V0 were also investigated and compared to V0 results.

Inexperienced users of V0 at both SWA and UVA were tasked with conducting searches for data sets using
different types of keywords and valids as input. Searches were attempted for data sets that should contain
information on winds, clouds, land use, vegetation cover, surface refleaance, lidar measurements, dust, and

aerosols. The data set searches were done using the WWW V0 gateway, by contacting individual data
centers and DAACs, and via lntemet search engines (i.e., Infoseek, AltaVista, etc.).

One of the most telling examples was the search for AVHRR data using different valids (dust, aerosol, etc.)
that were known to be covered by the AVHRR data. Inconsistent results were found under different search

conditions. The valid of"dust" resulted in no "hits" of AVHRR data while using "aerosol" as a valid
resulted in hits depending on the other information supplied.

One of the main f'mdings of this exercise was that the searchable metadata for data sets doesn't always give

the proper information, and is otten populated by jargon that is of no use to the non-expert user or one
unfamiliar with the data sets. These results helped lead to the submission and subsequent award of a
proposal by a UVA colleague (Dr. Jim French) that is attempting to find better definitions for metadata and

the way that they are used and searched by the interactive data systems such as V0.

An On-line HDF Tutorial

Under the subcontract, SWA has developed an on-line tutorial entitled "An HDF Tutorial for Beginners:

EOSDIS Users and Small Data Providers." The tutorial was geared mainly for HDF non-experts,
particularly potential future users of EOS data, with the main purpose of providing the necessary
information needed to enable a user to read and write data in HDF. Information is provided in a clear an
easy to understand form and includes step-by-step directions on how to work with the HDF files. Also

included in the tutorial are sections on the basics of HDF and the HDF library; programming with HDF;

available tools for HDF (including links), example programs, and many other features.

The tutorial was developed using, but not limited to, the following resources:

Lessons learned by novice HDF users at SWA and UVA

Meetings with NCSA

Studying all existing documentation and applying/collating the most important material
for novice users

Attending annual workshops on HDF and HDF-EOS

Learning common problems with HDF through user feedback on the tutorial and

participation in various HDF newsgroups and mailing lists

Copies of the monthly reports reflecting the progress of the tutorial development are available upon
request.

The tutorial has been constructed in two parts. First is what we call the "Lecture" component where we

present what we think is the information necessary for a novice user to learn what HDF is, what it can be
used for, and how to apply it in practice. Included in this "Lecture" material is a step-by-step outline

detailing what the user must do to successfully read or write an HDF file. The second component of the

tutorial is a question and answer section (what we call the "Laboratory") which tests the user's knowledge
of HDF, concentrating on the information needed by the novice or average HDF user to work
independently with the HDF library to read and write HDF files.

We realize that the familiarity and knowledge level of the users of this tutorial will span a wide range. As a

result, we think it should be up to the users to decide how they wish to learn and navigate through the

tutorial. However, we do advise that those with very little or no knowledge of HDF should first preview
and study the lecture material before testing themselves with the Laboratory section.

The tutorial was initially developed in Visual Basic and was only available for users with Windows 95/98.

Early drafts of this initial version were partially described in the 16 February 1998 Progress Report,
including reprints of conference papers given on the tutorial. However, the tutorial is now available via the

World Wide Web and can be accessed at Simpson Weather Associate's HDF page at the following Internet
address: http://cvclonc.svca.conVmctcorologv/hdf/. A copy of this HTML version is found in Attachment C.
In addition to the Internet/HTML version, a Microsoft word version of the tutorial is also available for

download at the same address. A copy of the Microsoft Word version of the tutorial is found in Attachment

D. It should be noted that the copies of the tutorial placed in the attachments do not contain the entire

Question and Answer section of the tutorial due the interactive nature of the Laboratory. However, a few

examples of the questions are included in Attachment C. The entire Laboratory can be viewed by visiting
the above-mentioned site and viewing the HTML version of the tutorial.

In addition to the above tutorials, ongoing work under a follow-up proposal is expanding the tutorial to
include additional HDF data types and to cover HDF-EOS. HDF-EOS is an extension of the HDF library

that helps the user to deal with certain types of point, gridded, and swath data sets that will be routinely
generated from EOS missions. A Beta version of this tutorial should be available shortly at the same
lnternet site noted above.

ATTACHMENT A

Report from the May 1999

Science Data Panel

by

Dr. G.D. Emmitt

University of Virginia

Charlottesville, VA

(In Fulfillment of NASA Contract NAG5-1961)

November 12, 1999

r_

_D

<
Z

G5 ""G_

0

0

ATTACHMENT B

Survey Requesting IDS Teams

Input on the Descoping and

Rescoping of the EOSDIS

by

Dr. G.D. Emmitt

University of Virginia

Charlottesville, VA

(In Fulfillment of NASA

NAG5-1961)

Contract

November 12, 1999

Request for input from the IDS teams to the process of

descoping and rescoping of the EOSDIS

As you know, there is currently an intensive effort underway within NASA, the

ESDIS Project in particular, to develop an EOSDIS plan that will stay within a shrinking

budget over the next 4-5 years. After that period, the expectation is that there will be a

transition to the "New DISS" which is being studied by a team headed by Martha

Maiden. For a status report on EOSDIS see Skip Reber's article on page 37 of the
Nov/Dec issue of The Earth Observer.

The bottom line is that some of the original functionality and performance of the

DIS is going to have to be dropped or rescheduled. The ESDIS has presented numerous

sets of options for meeting budget guidelines. There are detailed matrices of

requirements, data interdependencies, and so forth for those who wish to delve into the

trade space in detail (e-mail me if you want 51 viewgraphs, the latest version of those

presented by Mike Moore at the IWG meeting). However, since these budget and scoping

exercises seem to be nearly continuous and the details always changing, the EOSDIS

Data Panel has been asked to provide some general guidance from the user community,

from the IDS teams in particular. Thus I am asking for a few minutes of your time to
weigh in on this matter.

First, here is my summary of Option A+ (don't be misled by the + sign) which is

currently favored by ESDIS and agreed to by Ghassem.

• Rely on the existing V0 user interface (with some modest upgrades) for the

early AM-1 mission era, put an indefinite hold on the development of the ECS

JEST, and see how far we go with the rapidly changing data search capabilities
available on the "Web".

• Eliminate automated order tracking

• Reduce system data processing capacity from 4x to 3x where "x" is the

capacity required to process all data collected in 24 hours.

• Reduce the data distribution capacity from 1.6x to lx where "x" is the capacity

required to distribute all data processed in 24 hours.

• Archive levels 1 and 2 data products for only six months (with exceptions for

those cases when there are no higher level products) with processing on

demand thereafter. Level 3 and above data products will always be archived.

• Allow PI-led data processing to take place at PI institutions or by PI negotiated

arrangements with DAACs

While you may wish to comment directly on one or more of the items above or on

particular issues raised by Mike Moore's viewgraphs, there are several key trades that

always need addressed when budgets are tightened. They are:

• Providing user services through several focus DAACs (LaRC, GSFC, JPL, etc)

vs. one or two super DAACs. This trade comes down to the cost of people vs.

the importance of the perception of specialized service to the user and the

benefits of DAACs competing with each other for new data sets. By the way,

the super DAACs were not considered for Option A+.

• Archiving all Level 2 and higher data products vs. producing higher level

products upon demand (i.e. cost of archival vs. cost of production)

• Developing specialized EOS data search and display tools vs. relying on

generally available internet data search tools (puts emphasis on making sure

EOS data are visible to those search tools rather than developing a customized

data/metadata format)

• Providing specialized services such as subsetting, coincidence searching, order

tracking, automated version update notifications, etc vs. straightforward data

listing and order functions and media options. (shifts the burden of sifting

through large data sets for the target information fi'om the DIS to the individual

user).

/f
user, on:

FOU do nothing more, please express your opinion, as a cross discipline data

Multi vs. centralized user service centers

• Rapid data retrieval from archives vs. reprocessing upon demand (less timely,

perhaps)

• Using generally available Internet tools to search for data sets vs. customized

tools that may be more efficient.

• Simplifying the function of the DIS to advertising data sets and filling orders

without special services such as subsetting, coincidence searching, granule
content searches.

I need to hear [rom Vou immediatelv No response will be seen by ESDIS as

general agreement with their recommendations for reducing user services.

Dave Emmitt

Chair, EOSDIS Science Data Panel

Simpson Weather Associates, Inc.
809 E. Jefferson St.

Charlottesville, Va. 22902
804-979-3571

804-979-5599 fax
g_dc "a th under, sxva. corn

ATTACHMENT C

An HDF Tutorial for

Beginners : EOSDIS Users

and Small Data Providers

(HTML Version)

by

Mr. Steven Greco

Simpson Weather Associates

Charlottesville, VA

(In Fulfillment of NASA Contract NAG5-1961)

November 12, 1999

Main Topics Page 1 of 1

Main Top ics

1. Tutorial Overview

2. An Introduction to HDF

3. The HDF Library: Software and Hardware

4. Methods of Working with HDF Files
5. Scientific Data APl

6. Attributes and Metadata

7. Writing a SDS to an HDF File

8. Obtaining Information on Existing HDF Files

9. Reading a Scientific Data Set from an HDF file

10. Example Programs

11. Browsing and Visualizing HDF Data

12. Laboratory (Question and Answer)

file://C:htlDF 99 HTMLkMain_Topics.html 10/27/99

Intro done Page 1 of 3

An Introduction to HDF

What is HDF?

What types of data does HDF support?

Which version of HDF should I use?

Where can 1 get additional and detailed information on HDF?

Previous Main Topic Next Main Topic

Return to Main Topics

What is HDF?

HDF, which stands for Hierarchical Data Format, is a common data format that has been developed to

aid scientists and programmers in the goring, transfer and distribution of data sets and products

created on various machines and with different software. HDF has been selected by the NASA ESDIS

project as the format of choice for the standard product distribution that will be part of the Earth

Observing System Data and Informations System (EOSDIS).

In addition, HDF also refers to the collection of software, application interfaces, and utilities that

comprise the HDF library and allows users to work with HDF files. The HDF library is discussed in

detail in Section 3 - The HDF Library: Software and Hardware.

Features of HDF

HDF is a multi-object file format for the sharing and storing of scientific data. Some of the most

important features of HDF are the following:

°

2.

3.

4.

5.

file://C:htlDF 99 HTML_Intro.htm

Self-describing: For each data object in an HDF file, there is also information (or metadata)

about the data type, size, dimensions and location found within the file itself.

Extensibility: HDF is designed to accommodate future (new) data types and data models.

Versatility: Currently, HDF supports six different data types and provides software and

applications to read and write these data types in HDF.

Flexibility: HDF lets the user group, store, and read/write different data types in the same file or
in more than one file.

Portability: HDF software is mainly platform independent and can be shared across most

computer platforms (all platforms have not been tested).

10/27/99

lntro done Page 2 of 3

6. Standardization: HDF standardizes the formats and descriptions of many types of commonly-

used data types (i.e., arrays, images, etc.).

7. HDF is available in the public domain.

Return to top

What types of data does HDF support?

As of the latest release ofHDF (HDF4.1 release 3 in May 1999), the HDF library supports the

working with raster images, color or gray scale palettes, multi-dimensional arrays, text strings, and

statistical data (in the form of tables). The HDF library supports the following data types:

1. Scientific Data sets -- Multi-dimensional integer or floating point arrays

2. Vertex Data (Vdata and Vgroups) -- Multi-variate data stored as records in a table

3. General Raster (Gr) -- Raster images

4. Annotation -- Text strings to describe files and parts of files (metadata)

5. 8-bit Raster images

6. 24-bit Raster images

7. Palette -- 8-bit color palettes (accompany images)

In addition to these data types supported by the base HDF library, a sub-library called HDF-EOS has

been developed to support the various data types anticipated fi'om the Earth Observing System (EOS)

satellite missions. The HDF-EOS data models include point data, satellite swath data, and gridded
data.

As mentioned in the Welcome section, this tutorial will concentrate on the Scientific Data Model as a

means of teaching the essentials of HDF. More information on the other data models can be obtained

in the various documents (particularly the HDF User's Guide) provided by NCSA through their

anonymous tip server or World Wide Web home page.

Return to tOp

Which version of HDF should I use?

The most current version or release of HDF is the best place to begin. As of July 1999, the current

version of the HDF library is HDF 4.1r3. An extension of the HDF library, called HDF-EOS, is based

on this version of HDF and is designed specifically to work with data products anticipated from the

upcoming EOS satellite missions. The current tutorial will focus on the releases (i.e., rl, r2 or r3) of

HDF4.1. One feature of HDF4 that is important, especially to experienced users of HDF, is the

backwards compatability of HDF. That is, HDF4.1r3 is compatabile with earleir versions such as

HDF4.1rl and the data sets that were generated.

It should be noted that an experimental version of HDF, called HDF5, has also recently been

developed to address the shortcomings of HDF4. This new HDF library includes simpler source codes,

file://C:_HDF 99 HTMLklntro.htm 10/27/99

Intro done Page3 of 3

moreconsistentandfewerdatamodels,andthe ability to work with large data sets (> 2GB).

However, although plans call for the HDF-EOS interface to be based on HDF5 at a later date, it is

only in the experimental/prototype stage. HDF5 and the associated software will not be covered in this

tutorial. The user is directed to NCSA's HDF5 Page for detailed information.

Return to top

Where can I get additional and detailed information on HDF?

The best sites or locations to find detailed information on all aspects of HDF are the NCSA HDF

Information Server available through the Internet and the NCSA anonymous tip server. Inquiries

should be sent to hdfhelp@ncsa uiuc edu.

The following documents and information can be obtained through the sources mentioned above:

1. HDF 4.1 r3 Reference Manual

2. HDF 4.1 r3 Users Guide

3. HDF Specifications and Developers Guide v3.2 (mainly for the programmers/developers)
4. HDF Newsletters

5. HDF Frequently Asked Questions (FAQ)
6. Java Products

7. Frequently Asked Questions about Java and HDF

8. Release Notes and Man Pages provide information on items that are not covered in the above
documents

9. HDF software contributions from non-NCSA users

In addition, users may wish to join the hdfnews mailing list (by emailing ncsalist@ncsa.uiuc, edu and

placing subscribe hdfiaews in the body of the message) for discussions and updates on HDF.

Return to top

file://C:kHDF 99 HTML_Intro.htm 10/27/99

HDF_LiB doiie Page1of 12

The HDF Library: Software and Hardware

What is the HDF library and how can it be used?

Obtaining and installing the HDF library

Computer platforms Supporting the HDF library

Programming languages supporting the HDF library

Compiling the I-IDF library

Previous Main Topic Next Main Topic

Return tO Main Topics

What is the HDF library and how can it be used?

The HDF library is a collection of software routines that provides two types of interfaces which allow

the user to work with HDF files. A brief capsule describing these interfaces is provided below:

Low-level Interface

Application Programming Interfaces (APls)

Components of the HDF library include the base library, the multi-file library, the jpeg, library, and the

gzip library. The most recent versions of HDF also contain a Java Products, which includes a Java

HDF Interface (Jill) and a Java-based HDF viewer.

The HDF library also provides a set of command-line utilities that allow the user to work with HDF

files outside of the interfaces and within the command level (such as UNIX) of a terminal session.

Outside of the HDF library, there is also a large number of browsing and visualization software

packages (both free and commercial) that allow the user to look at all types of HDF files. These two
methods will be discussed later in the tutorial.

Return totop

file://C:kI-lDF 99 HTML\HDF LIB.html 10/27/99

HDF_LIB done Page 2 of 12

Obtaining and installing the HDF library

The HDF library and utilities are public domain soliware and are freely available, along with

documentation, from the NCSA anonymous tip server. The latest release of the HDF library can be

downloaded via tip from the NCSA Current HDF release. Associated documentation and reference
material can also be obtained from NCSA Current HDF Documentation. The source code of the HDF

library and utilities are available with each "release" of HDF and can be downloaded free of charge

from this lip site. The files are available in various forms to support users ofPCs, Macs, etc...

Unfortunately, the HDF library may not be accessed by every computer platform. The following

sections list the platforms and operating systems on which the latest release of HDF has been tested.

NCSA provides a binary distribution for those platforms supported by HDF. For platforms that are not

specifically supported, the HDF source code is provided.

HDF Binary Distribution

How do you install HDF on your computer system? Detailed directions for configuring and installing
the latest version of HDF can be found in the README and INSTALL files located in the

HDF_Current unpacked subdirectory of the NCSA HDF ftp server.

In order to use the HDF library through C and FORTRAN programs, the user's computer must have

either a C or FORTRAN library linked with the HDF library.

For those users who wish to work with HDF using Java, Version 2.3 of the HDF Java Products has

been released as part of the latest release of the HDF library. Included in these products is the Java

HDF Interface (JHI) for the HDF library. The JHI provides an interface to all the functions of the

HDF library and may be used by any Java application to work with HDF files. The necessary Java

source code can be downloaded from ttp.ncsa uiuc.edu/HDF/HDF/HDF Current/java

These are the only languages which can call HDF routines (more detailed information in

"Programming languages supporting the HDF library").

Return to top

Computer platforms supporting the HDF library

The latest version of the HDF library is HDF 4.1 Release 3. Although the list of machines supported

by the HDF library increases with every incremental version or release of HDF, it is still not possible

to work with HDF files on every single platform or operating system. As of the current release in July

1999, the HDF library is currently supporting the following computer platforms and operating

systems:

1. Sun4 (Solaris 2.6, SunOS 4.1.4)

2. SGI-Indy (IRIX v6.5)

3. SGI-Origin (IRIX64 v6.5-64/n32)

file://C:ht-IDF 99 HTML\HDF LIB.html 10/27/99

HDF_LIB done Page3 of 12

4. HP9000/735 (HP-UX 9.03)

5. HP9000/755 (HP-UX B.10.20)

6. Exemplar (HP-UX A.10.01)

7. Cray T90 (CFP, IEEE)

8. Cray C90

9. IBM SP2 (v4.2.1)

10. DEC Alpha/Digital (Unix v4.0)

11. DEC Alpha/OpenVMS (AXP v6.2 and 7.1)

12. VAX Open/VMS (v6.2)

13. IBM PC-Intel Pentium (Solarisx86, Linux (elf), FreeBSD)

14. PowerPC (C only- Mac-OS-7.6))
15. PCs with Windows NT/95

16. Windows NT/95

17. DEC Alpha NT

18. T3E (unicosmk 2.0.4.46)

As of July 1999 and the latest release of the HDF library (4. lr3), the only platforms that support the

Java HDF interface (Jill) are:

1. Sun4 (Solaris 2.5)

2. SGI-Indy (IRIX5.3)

3. IBM PC - Intel Pentium (Solarisx86 (2.5) and Linux (elf) 2.0.27)
4. Windows NT/95

Earlier versions or releases of the HDF library can still be used but may not be compatible with the

platforms listed above.

Return to top

Programming languages supporting the HDF library

As of the current release ofHDF (HDF 4.1r3), the only programming languages which are supported

by the HDF library are C and FORTRAN. Although the HDF library code is only written in C, the

library provides both a FORTRAN and Java Interface which converts the code to C and allows the

user to call the HDF routines. This conversion will automatically take place and requires no action by
the user.

Other then the obvious differences between the programming languages, the main difference between

using the different languages is the naming convention, or names used for each HDF function. In

addition, to use and compile HDF application routines through C programs, an HDF header file

(hdf.h) containing standard HDF data type and file access code (i.e. read, write) definitions,

declarations and prototypes for the API routines must be called or included (#include "hdf.h") at the

beginning of the program. These header files are not permitted in all FORTRAN versions and the

needed information must be written into the FORTRAN code (taken fi'om the HDF library file

"constants.f' within "hdf.h").

One of the most recent updates to the HDF library is that it now creates free format FORTRAN

file://C:_HDF 99 HTML_-IDF LIB.html 10/27/99

HDF_LIB done Page4 of 12

include files during the "make" process on UNIX platforms. This allows FORTRAN 90 programs to

use HDF include files. The FORTRAN 90 files are designated by the ".t90" file extension.

Another recent update to the HDF library is the inclusion of the Java HDF Interface (Jill) as part of

HDF version 4. lr3. The JHI provides an interface to all HDF functions and must be obtained and

installed in order to use Java to work with HDF files. Please see Obtaining and installing the HDF

library for further details.

Return to top

Compiling the HDF library

The following examples (for UNIX platforms) illustrate the general method of compiling the HDF

library using both C and FORTRAN programs. It should be noted that, for C programs, the line

"include mfladf.h" must be included if using the mfhdflibrary OR the line "include hdf.h" flit is not

being used. Also worth noting is that, as indicated below, the following libraries must be specified in

the following order- librnfhdf.a, libdf.a, libjpeg.a, and libz.a.

C programs

cc -o <your program> <your program>.c -I<path for hdf include directory> -L<path for

hdf libraries> -lmfladf-ldf-ljpeg -lz

FORTRAN programs

t77 -o <your program> <your program>.f-I<path for hdfinclude directory> -L<path for

hdf libraries> -lmthdf-ldf-ljpeg -lz

Specific examples for various platforms are provided below. If the platform you use is not listed, the

general instructions should be followed.

The latest platform related information can be found on the NCSA anonymous tip server at

HDF4.1 r3/releasenot esdcompile.txt.

!NSTRUCTIONS FOR SPECIFIC PL_ATF_Q_RMS

Cray C90 or YMP:

C:

cc -O -s -o <your program> <your program>.c -I<path for hdfinclude directory> -

L<path for hdf libraries> -lmfladf-ldf-ljpeg -lz

file://C:\HDF 99 HTMLhLIDF LIB.html 10/27/99

HDF_LIB done Page5 of 12

FORTRAN:

c177-O 1-s -o <yourprogram><yourprogram>.f-I<pathfor hdf includedirectory>-
L<pathfor hdf libraries>-lmfhdf-ldf-ljpeg -lz

DecAlpha/DigitalUnix:

C"

FORTRAN:

cc -Olimit 2048 -stdl -o <your program> <your program>.c -I<path for hdf include

directory> -L<path for hdf libraries> -lmfladf-ldf -ljpeg -lz

177 -o <your program> <your program>.f-I<path for hdf include directory> -L<path for

hdf libraries> -lmflldf-ldf-ljpeg -lz

Dec Alpha/OpenVMS AXP:

To compile your programs, prog.c and progl.for, with the HDF library, mfladf.olb, df.olb, and libz.olb

are required. The libjpeg.olb library is optional.

cc/opt/nodebug/define=(HDF,VMS)/nolist/include=<dir for include> prog.c

fort progl .for

link/nodebug/notraceback/exec=prog.exe prog.obj, progl.obj, -<dir for lib>rnfladf/lib -

<dir for lib>df/lib, <dir for lib>libjpeg/lib, -<dir for lib>libz/lib, sys$library:vaxcrtl/lib

NOTE: The order of the libraries is important: mthdf.olb first, followed by df.olb then libjpeg.olb and
libz.olb.

Exemplar:

C:

cc -ext -nv -no <your program> <your program>.c -I<path for hdf include directory> -

L<path for hdf libraries> -lmthdf-ldf-ljpeg -lz

FORTRAN:

fc -sfc -72 -o <your program> <your program>.f-I<path for hdf include directory> -

file://C:_IDF 99 HTML_qDF LIB.html 10/27/99

HDF LIB done Page6 of 12

L<pathfor hdf libraries>-lmthdf-ldf-ljpeg -lz

FreeBSD:

C:

FORTRAN:

gcc-ansi-Wall -Wpointer-arith-Wcast-qual-Wcast-align-Wwrite-strings-Wmissing-
prototypes-Wnested-externs-pedantic-02 -o <yourprogram><yourprogram>.c-
I<pathfor hdf includedirectory>-L<pathfor hdf libraries>-lmthdf-ldf-ljpeg -lz

t77-O -o <yourprogram><yourprogram>.f-I<pathfor hdf includedirectory>-L<path
for hdf libraries>-knfladf-ldf-ljpeg -lz

HP - UX:

C:

cc -Ae -O -o <yourprogram><yourprogram>.-I<pathfor hdf includedirectory>-
L<pathfor hdf libraries>-lmthdf-ldf-ljpeg -lz

FORTRAN:

177-O -o <yourprogram><yourprogram>.f-I<pathfor hdf includedirectory>-L<path
for hdf libraries>-lmfladf-ldf-ljpeg -lz

IRIX 5.3:

C:

cc -ansi-O -s-o <yourprogram><yourprogram>.c-I<pathfor hdf includedirectory>-
L<pathfor hdf libraries>-lmfladf-ldf-ljpeg -lz

FORTRAN:

177-O -s-o <yourprogram><yourprogram>.f-I<pathfor hdf includedirectory>-
L<pathfor hdf libraries>-lmfladf-ldf-ljpeg -lz

IRIX 6.x with 64-bitmode:

file://C:kHDF99 HTML\HDF LIB.html 10/27/99

I-fl)F_LIB done Page7 of 12

C"

cc -ansi -64 -mips4 -O -s -o <your program> <your program>.c -I<path for hdf include

directory> -L<path for hdf libraries> -lmthdf-ldf -ljpeg -lz

FORTRAN:

177 -64 -mips4 -O -s -o <your program> <your program>.f-I<path for hdfinclude

directory>\ -L<path for hdf libraries> -lmthdf -ldf-ljpeg -lz

IRIX 6.x with n32-bit mode:

C"

cc -ansi -n32 -mips3 -O -s -o <your program> <your program>.c -I<path for hdf include

directory> -L<path for hdf libraries> -lmthdf-ldf-ljpeg -lz

FORTRAN:

t77 -n32 -mips3 -O -s -o <your program> <your program>.f-I<path for hdf include

directory> -L<path for hdflibraries> -lmthdf-ldf-ljpeg -lz

Linux A.OUT And ELF:

C:

gcc -ansi -o <your program> <your program>.c -I<path for hdfinclude directory> -

L<path for hdf libraries> -lmthdf-ldf-ljpeg -lz

FORTRAN (a.out only):

t77 -o <your program> <your program>.f-I<path for hdf include directory> -L<path for

hdf libraries> -lmfladf-ldf-ljpeg -lz

Solaris:

The -lnsl is necessary in order to include the xdr library.

C:

file://C:_LIDF 99 HTML_-IDF LIB.html 10/27/99

HDF LIB done Page8 of 12

FORTRAN:

cc -Xc -xO2-o <yourprogram><yourprogram>.c-I<pathfor hdf includedirectory>-
L<pathfor hdf libraries>-lrnfladf-ldf-ljpeg -lz -L/usr/lib-lnsl

177-O-o <yourprogram><yourprogram>.f-I<pathfor hdfincludedirectory>-L<path
for hdf libraries>-lmthdf-ldf-ljpeg -lz -L/usr/lib-lnsl

Solaris_x86(C only):

The-lnsl isnecessaryinorder to include the xdr library.

gcc -ansi -O -o <your program> <your program>.c -I<path for hdf include directory> -

L<path for hdf libraries> -lmthdf-ldf-ljpeg -lz -L/usr/lib -lnsl

SP2 (AIX):

C:

xlc -qlanglvl=ansi -O -o <your program> <your program>.c -I<path for hdf include

directory> -L<path for hdf libraries> -lrnfladf-ldf-ljpeg -lz

FORTRAN:

177 -O -o <your program> <your program>.f-I<path for hdf include directory> -L<path

for hdf libraries> -lmfladf -ldf-ljpeg -lz

SunOS:

C:

gcc -ansi -o <your program> <your program>.c -I<path for hdf include directory> -

L<path for hdf libraries> -lmfladf-ldf-ljpeg -lz

FORTRAN:

t77 -f-o <your program> <your program>.f-I<path for hdf include directory>-L<path

for hdf libraries> -Im_df-ldf-ljpeg -lz

t3d:

file://C:kI-ff)F 99 HTMLkI-IDF LIB.html 10/27/99

HDF LIB done Page 9 of 12

C (only):

cc -Tcray-t3d -X1 -o <your program> <your program>.c -I<path for hdf include

directory> -L<path for hdf libraries> -lrn_df-ldf-ljpeg -lz

VAX OpenVMS:

To compile your programs, prog.c and progl.for, with the HDF library, mfhdf.olb, df.olb, and libz.olb

are required. The libjpeg.olb library is optional.

cc/DECC/STANDARD=VAXC/opt/nodebug/define=(HDF,VMS)/nolist/include=-<dir

for include> prog.c

fort progl .for

link/nodebug/notraceback/exec=prog.exe prog.obj, progl .obj, -<dir for lib>mfhdf/lib -

<dir for lib>df/lib, <dir for lib>libjpeg/lib, -<dir for lib>libz/lib, sys$library:deccrtl/lib

NOTE: The order of the libraries is important: mfladf.olb first,followed by df.olb then libjpeg.olb and

libz.olb.

Windows NT / 95:

Using Microsoft Visual C++ version 4.x:

• Under Tools->Options, select the folder, Directories:

• Under "Show directories for", select "Include files".

• Add the following directories:

C:\MSDEVkINCLUDE

C:hMSDEVLMFC\INCLUDE

C:<path to HDF includes>\INCLUDE

• Under "Show directories for", select "Library files":

• Add the following directories:

C:LMSDEVkLIB

C:LMSDEV_MFCkLIB

C:<path to HDF libs>kLIB

file://CAHDF 99 HTMLhHDF LIB.html 10/27/99

h_F_LiB done Page10of 12

• Under Build->Settings, select folder, Link:

• Add the following libraries to the beginning of the list of Object/Library Modules:

libsrc.lib src.lib jpeg.lib zlib.lib xdr.lib getopt.lib

• The following libraries may (or may not) need to be included:

keme132.lib user32.1ib gdi32.lib winspool.lib comdig32.1ib advapi321ib

shel132.lib ole32.lib oleaut32.lib uuid.lib odbe32.lib odbccp32.1ib

• Under Build->Settings, select folder C/C++:

• For the Preprocessor Definitions add: INTEL86

• The following were already there: WIN32,_CONSOLE

Return to top

Low-level Interface

The so-called low-level interface provides software that enables the user to work with such me

features as memory, error handling, and storage. However, these features and the software are more

of interest to the experienced programmer and sottware developer not the HDF novice or beginner

interested in learning to read and write HDF files.

Information on the low-level interface can be found in the documentation listed in Section 2 Where

can I get additional and detailed information on HDF?

Return

Application Programming Interfaces (APIs)

Of more use to the average HDF user are the high-level or Application Programming Interfaces

(APIs). These APIs are sets of routines that can be called in the user's FORTRAN or C program and

which will allow the user to access, read, and write HDF files. There are APIs specifically created for

each of the different data types supported by HDF which allow the user to work with HDF files.

Further detail is provided in Section 4 - Methods of Working with HDF Files.

Return

file://C:ht-IDF 99 HTMLhLIDF LIB.html 10/27/99

HDF_LIB done Page11of 12

HDF Binary Distribution

On UNIX, VMS, and Windows NT/95, the binary distribution includes the pre-compiled libraries,

utilities, include files, man pages, and release notes. The binary distribution on the Macintosh does not
include the utilities.

The binaries are located in the following directories on the NCSA tip server (tip. ncsa uiuc.edu):

1. /HDF/HDF Current/bin- Unix and VMS

2. /HDF/HDF_Current/zip- Windows NT/95

3. /HDF/HDF_Current/hqx- Macintosh

If you uncompressed the binaries for a supported platform, you would (in general) find the following
directories:

../bin - pre-compiled utilities

../include - include files

../lib - libraries

../man - man pages

../release notes - release notes

The compressed source code can be found on the tip server in/HDF/HDF_Current/tar. An

uncompressed version of the source code can be found in/HDF/HDF_Current/unpacked.

To compile and install the HDF libraries from the source code, please read through the READ and

INSTALL files in the top directory of the source code. In general, these are the steps you would take

to compile and install HDF:

./configure -v

make >& comp.out

make test >& test.out

file://C:_IDF 99 HTML\HDF LIB.html 10/27/99

HI)F_LIB done Page12of 12

makeinstall

Returnto top

file://C:hLIDF99 HTMLLHDF LIB.html 10/27/99

File_methodsdone Page 1 of 6

Methods of Working with HDF Files

There are four basic ways or methods of working with (including reading and writing) HDF files.

These include two levels of programming interfaces within the HDF library, a set of command line

utilities also contained in the HDF library, and a wide range of browsing and visualization software

provided by both commercial vendors and non-profit organizations (NCSA, for example). Further

detail on each method is given below:

• Low-level interface

• High-level interface (APIs)
• Command line utilities

• HDF browsing and visualization tools/software

Both the command line utilities and the browsing and visualization tools provide easy-to-use methods

for HDF non-experts to work with HDF files. As shown above, the use of the command line utilities is

rather straight forward. However, neither the command line utilities nor tools provide the user with

the flexibility and means of working with the HDF files in such an encompassing fashion as permitted

in the High-level APIs. For this reason, as well as the fact that information and directions regarding

the use of the HDF tools are better provided by the Internet sites linked above, the following sections

of the tutorial will mainly concentrate on using the APIs to work with HDF files.

Previous Main Topic Next Main Topic

Return_ to Main Topics

Low-level interface

The low-level interface is mainly reserved for expert HDF programmers and software developers who

are interested in not only reading and writing HDF files, but also such features as error handling,

memory management, and storage. A lot of the features in this interface are unnecessary for the novice

HDF user. Another drawback is that routines/operation callable through this interface are only
available in C and not FORTRAN.

Return to top

High-level interface (APIs)

In this interface, Application Programming Interfaces (APls) are specifically tailored for each type of

data (Images, Scientific Data arrays, etc.) supported by the HDF library. These APIs are callable

routines which will allow the user to access, read and write HDF files specifically for the type of data

they are interested in. Although it is necessary for the call of these APIs and associated routines to

occur in either a C or FORTRAN program, the programming is usually limited to a set of call

statements that access, open, operate (read, write, etc.), and terminate. All of the rest is taken care of

file://C:htlDF 99 HTML_File methods.html 10/27/99

File_methodsdone Page4 of 6

• SW API (SW/sw): The SW API is used for storing, retrieving, and manipulating time-ordered

data sets such as satellite swath data. The SW API is part of the HDF-EOS sub-library.

Return

List and description of command line utilities

HDF Command line utilities can be executed at the command level (prompt) similar to UNIX. The

following is a list of some of the command-line utilities available in the HDF library:

1. hdp - displays contents and data objects within an HDF file

2. hdt24to8 - converts 24-bit raster images to HDF 8-bit images

3. hdgSto24 - converts 8-bit raster images to HDF 24-bit images

4. hdfcomp - re-compresses an 8-bit raster HDF file
5. hdfls - lists basic information about an HDF file

6. hdfpack - compacts an HDF file

7. hdfimpac - unpacks an HDF file

8. hdtlopal - extracts a pallete from an HDF file

9. hdttor8 - extracts 8-bit raster images and palettes from an HDF file
10. hdfed - HDF file editor

11. paltohdf- converts a raw palette to HDF

12. r8tohdf- converts S-bit raster image to HDF

13. ristosds - converts a series of raster image HDF files into an HDF file

14. vshow - dumps out vsets from an HDF file

15. jpeg2hdf- converts jpeg images to HDF raster images

16. hdt2jpeg - converts HDF raster images to jpeg images

17. fp2hdf- converts floating point data to HDF floating point format and to HDF 8-bit raster

image format
18. vmake - create Vset structures from ASCII text

The hdp command line utility is a very helpful operator, especially for the average HDF user. HDP can

list the contents of HDF files at various levels and with different details. It can also dump the data of
one or more specific objects in the file.

Return

Publicly Available Software

Freely available software for viewing and browsing HDF files have been developed by both NCSA and

various other institutes, science or data centers, and businesses. We have broken these tools down into

three categories:

• Current NCSA Tools

• Older NCSA Tools (not updated to run with latest version of HDF)

• Non-NCSA Tools

Return

file://C:hqDF 99 HTML_File_methods.html 10/27/99

File_methodsdone Page5 of 6

Current NCSA Tools

The following are the most current and commonly used tools developed by NCSA for viewing and
browsing all types of HDF files:

1. The NCSA Java-based HDF Viewer (JHV) - Java based tool that allows the user to view the
contents of an HDF file.

2. The HDF WWW Scientific Data Browser - an interface program that reads HDF files by

accessing teh HDF library and can visualize or format the data (in HTML) on the web.

3. The Java HDF Server (JHS) - The java based program that calls the HDF library through the
Java interface and can access remote HDF files.

Older NCSA Tools

Although not updated to run with the current release ofHDF (HDF 4.1r3), the following tools may

still be used to work with HDF files. All of these tools are available from the NCSA anonymous tip
server

1. NCSA Collage - Collaborative visualization program

2. NCSA Polyview - Visualization and analysis of HDF files

3. NCSA Reformat - Converts to and from HDF files

4. NCSA X DataSiice - Manipulates 3-D HDF images

Non-NCSA Tools

The following tools have been developed independently from NCSA, but are still available in the
public domain:

1. The Data and Dimensions Interface (DDI) - Can extract, read, write and visualize large data sets
in HDF format.

2. Enx6sion - Interactive system which provides for the management and visualization of large data
sets in HDF format.

3. HDF Browser - Created by Fortner Research to provide point-and-click access to data stored in

HDF. This includes viewing the data stored in arrays, images, etc.. and editing HDF files.

4. hdfv - An HDF read-only interface that is an HDF viewer with a GUI. Only supports
vgroup/Vdata data types.

5. LinkWinds - A visual data analysis and exploration system designed to rapidly and interactively

investigate large multivariate data sets (including HDF and HDF-EOS format).

6. SHARP - A viewer for MODIS Airborne Simulator (MAS) HDF data

7. ScaiAN - Scientific visualization and animation package.

8. VC S - Facilitates the selection, manipulation and display of scientific data. Supports the HDF

format for both reading and writing.

9. EOSView - An HDF file verification tool that allows the display of most HDF and HDF-EOS
data types.

10. The Data and Information Access Link (DIAL) - A server which provides tools for the

searching, browsing, and visualizing of HDF and HDF-EOS files through the WWW.

11. HDFLook - A viewer used to access and view HDF and HDF-EOS files, particularly raster
images and scientific data sets.

file://C:kHDF 99 HTML_File_methods.html 10/27/99

File_methodsdone Page 6 of 6

12. IRI/LDEO - A climate data library that helps in the writing of HDF files and the management of
data sets.

13. Webwinds - A platform independent system written in java that acts as an interactive
visualization tool for data in HDF and HDF-EOS format.

14. view hdf- A visualization tool developed by NASA LARC that provides for the viewing,
plotting, and manipulation of HDF datasets.

Return

Commercial Software

Below is a partial list of some of the more powerful and more commonly used software packages for
working with HDF files:

1. AVS5/AVSExpress - Can read and write files in HDF format. Also includes a suite of data

visualization and analysis techniques/tools (3-D visualization, plots, etc...).

2. Data Explorer - General purpose software package for data visualization and analysis. The data
may be imported from HDF format.

3. IDL - A software package for the analysis and visualization of data. Includes advanced image

processing, interactive 2-d and 3-D graphics, and flexible date input/output.

4. Noesys - A desktop software program specifically designed to easily access, view, analyze and
archive data in the HDF format.

5. Plot - A package that can read, analyze and plot HDF data sets of column data using Windows,
Macintosh and UNIX.

6. HDF Explorer - A visualization program that reads and views data sets in HDF format

Return

Contributed Software

In addition to the above-mentioned software, also available from the NCSA anonymous tip server is a

collection of sottware routines and utilities developed by HDF users who wish to share their

knowledge and work with the HDF community. These soRware can be found in the directory

pub/hdffcontrib/of the NCSA ftp server. Most of these "contributed" routines were developed with
specific platforms and operating systems in mind.

Below are a few examples:

• readDF - reads HDF files into IRIS Explorer

• fits2hdf- converts FITS files (another format) into HDF

• iristohdf- converts SGI image format to HDF format

• hdfxdis - directly displays HDF image on an X-server

These routines together with the name and address of the developer are free and publicly available to
all interested users of HDF.

Return

file://CAHDF 99 HTML\File_methods.html 10/27/99

ll"'r_ -- _ -- A 3r'_'r

onta_tu'l done Page 1 of 2

SD API

The SD (Scientific Data) API is a collection of callable (fi'om C or FORTRAN programs) routines

which will allow the user to, among other operations, create, write, and read HDF files containing
multi-dimensional arrays of scientific data. In subsequent sections, we will show how the SD API can

be used for reading and writing HDF data sets. For a complete listing of all the operations permitted in

the SD API, please see the _F 4 1r3 Userls Guide. As will be demonstrated shortly, FORTRAN (C)

routines in the SD API begin with the prefix "sf' CSD"). Data within a scientific data set may be of

the floating real or integer type. In HDF, and in the SD API, a scientific data set (or SDS) must

consist of a multi-dimensional array (called a SDS array), together with information on data type and

dimension record. The SD API allows the user to work simultaneously with more than one multi-

dimensional scientific data set (SDS) while the DFSD API is restricted to one multi-dimensional array.

• SDS Array

• Data Type

• Dimensions

• Optional information

Return to Main Topics

Previous Main Topic Next Main Topic

SDS Array

The SDS array is the actual data itself, an n-dimensional array which contains the floating point or

integer values. Each SDS array has an SDS name (series of alphanumeric characters) that can either be

assigned by the calling statement with the FORTRAN or C program or automatically assigned by the
HDF library when the new data set (if writing) is created.

Return to top

Data Type

The SD API supports the following data types:

• 32-bit floating point

• 16-bit floating point

• 8-bit signed integers

• 16-bit signed integers

• 32-bit signed integers

• 8-bit tmsigned integers

• 16-bit unsigned integers

• 32-bit tmsigned integers

file://C:hqDF 99 HTML£Data API.html 10/27/99

DataAPI done Page 2 of 2

• Variable bit integers and floating point decimal values

As described later, the data type is defined in the accessing/creating function call statements within the

C and FORTRAN programs.

Return to top

Dimensions

The dimemiom of an SDS array identify the shape and size of the array in question. This includes the

rank of the dimensions, which in HDF speak refers to the number ofdimensiom. One innovative

feature of HDF is that one, and only one, dimension of an SDS array may be of unlimited size and
referred to as an unlimited dimension.

Return to top

Optional information

When writing or creating an HDF file, the user may also wish to include information regarding the

data set or array. This must be done in the calling functions of the C or FORTRAN programs.

Attributes, either predefined by NCSA or user-defined, are text strings which provide metadata about

the file, data set, or dimension of interest. This includes information on what is in the file or individual

SDS arrays, and how the maker of the file/data intends for the data to be used or viewed. Like most of

the other routines mentioned above, attributes are defined in the function calls of the program.
Attributes are further covered in section 6.

Return to top

file://CAHDF 99 HTMLkData API.html 10/27/99

Attrib Page1of 2

Attributes and Metadata

The HDF library allows for several ways for the user to provide metadata (data about data)

information for the HDF file, data set or image to be written or read. This information is not a

requirement for HDF files. The most commonly used method or routine within the HDF library for

providing metadata are "Attributes" or text- strings which describe the HDF file, data set (SDS array)

or dimensions. There are two types of attributes used in HDF which can be defined in the user's calling

program:

• User-defined attributes

• Predefined attributes

Both the predefined and user-defined attributes may be accessed using the general attribute routines

for user-defined attributes provided by the HDF library. On the other hand, the predefined attributes

may only be accessed using the routines specifically tailored for the predefined attributes (see above).

As a result, in later sections, we will focus on using the general attribute routines developed for user-
defined attributes.

Previous Main Topic Next Main Topic

Return tO Main Topics

User-defined attributes

User-defined attributes are optional information that can be given and attached to HDF files, scientific

data sets, and dimensions (only in the SD API). They are referred to, respectively, as file attributes,

array attributes, and dimension attributes. These attributes are at the discretion of, and to be defined

by, the user.

The SD interface uses the same functions to access all of the three types of attributes, with the

difference being the use and definition of the different identifiers (i.e., file ids for file attributes, SDS

ids for array attributes, and dimension ids for dimension attributes). After the proper identifier is

obtained, the user can then create and define his attribute (labels, formats, coordinate system, etc.).

The attributes in the GR interface work in a similar fashion with indentifiers provided for both the

interface or the image in question.

More on user-defined attributes and how to define them is provided in Section 7: Writing an HDF
File.

Return to top

Predefined attributes

file://C:LqDF 99 HTMLkAttrib.html 10/27/99

Attrib Page2 of 2

Predefinedattributesareattributesthat usepreviouslydefinedor reservedlabelsanddata types. While

the user-defined attributes must be defined by the user, the predefined attributes need not be defined

and are already understood by the HDF library. However, in the SD API, predefined attributes can

only be assigned to scientific data sets (SDS) and dimensions (not files, like is possible with user-

defined attributes). In the GR API, there is only one predefined attribute, FILL_ATTR, which fills the

"empty" data of an image with default values.

There are seven main predefined attributes:

For labels:

For units:

For formats:

For coordinate systems:

For Value ranges:

For Fill values:

For Calibration:

long_name

units

format

cordsys

valid_range

FILL_ATTR, _FILL_VALUE

scale_factor, seale_factorerr, add offset,

add_offset_err, calibrated_nt

The predefined attributes can be accessed by the SD interface in the same general fashion as the user-

defined attributes or by using routines developed specifically for the predefined attributes. The

""general"" attribute routines are recommended in most cases.

Return to top

file://C:kI-IDF 99 HTMLkAttrib.html 10/27/99

File_writingdone Page1of 14

Writing a SDS to an HDF File

The following sections detail how a user may utilize the HDF library and the SD API within a

computer program to write a data file in HDF. As a teaching tool, this tutorial will concentrate on

using the FORTRAN programming language. However, examples of the appropriate C code will also

he given for certain steps.

• Does the current version of HDF Support your computer platform?

• Downloading and instailingofthe HDF library

• Are all libraries and programs properly linked and compiled?

• Writing a short program tO write data in HDF

Previous Main Topic Next Main Topic

Return to Main Topics

Does the current version of HDF support your computer platform?

As outlined in Section 3, the HDF library can not he run on just any available computer platform or

operating system. Before downloading the HDF library software, the user should make sure that the

current release of HDF supports his/her computer and operating system. Otherwise, the user will be

unable to work with the HDF library and files. There is also a possibility that previous releases of HDF

may support the Users computer platform while the latest version does not. In this event, the user may
wish to obtain the earlier software.

Return to top

Downloading and Installing of the HDF library

The HDF library and software is public domain software and available free to all users. The library and

code can be downloaded from the (NCSA anonymous tip se_er). Directions on how to install the

HDF library can also be found at this location.

Return to top

Are all libraries and programs properly linked and compiled?

In order to run the HDF software, the h"orary and the needed application routines and programs must

file://C:kI-IDF 99 HTMLkFile_writing.html 10/27/99

File_writingdone Page2 of 14

first beproperlycompiledandlinked.As of thecurrentrelease of HDF (4.1r3), four separate libraries

must be compiled and linked. These are the iibrnthdf.a, libdf.a, libjpeg.a, and libz.a libraries. Provided

below are examples of the command(s) that can be used for this action. It must be noted that the order

in which the libraries are linked is important and should not vary from the order shown below:

For C programs:

1. cc -o <your program> <your program>.c \

2. -I<pathf for hdf include directory> \

3. -L<path for hdflibraries> -lmthdf-ldf-ljpeg -lz

For FORTRAN programs:

1. t77 -o <your program> <your program>.f\

2. -I<path for hdf include directory> \

3. -L<path for hdf libraries> -lmihdf-ldf-ljpeg -lz

For the various commands needed to link and compile the HDF h'brary on each individual platform,

please see Section 3 "Compiling the HDF library".

Return to tOp

Writing a short program to write a scientific data set in HDF

• Select a programming language

• Make sure all include files are in place

• Make all variable and parameter declarations

• Open file containing e_xisting non-HDF data set and store in array

• Initialize access tothe SD interface and open new HDF file

• Define=characteristics of new HDF data set(s)

• Write existing data set/array to a new data array in a new HDF file

• Optional operation; Provide metadata for HDF fi!es or data sets

• Terminate/close access to all files, data sets, and APls

• Execute program

Return to top

Select a programming language

As mentioned previously, the HDF library and programs can only be rtm by using either the C or

FORTRAN programming language. This choice is up to the user depending on availability and the

language he or she feels most familiar and comfortable with. All SD API routines which allow the user

to work with scientific data sets (SDS) either have the "sf' prefix (FORTRAN) or the "SD" prefix (C).

Examples of the routines used to open, create, read, write, etc. SDS are given in the following
sections.

file://CAHDF 99 HTML_File_writing.html 10/27/99

File_writingdone Page3 of 14

Return

Make sure all include files are in place

In section 3 - The HDF Library; Software and Hard_ware, it was noted that a series of standard HDF

definitions and declarations of file access codes (i.e. read, write, etc.) and data types (i.e. integer,

character) must be included within the programs that the user writes to utilize the various application

routines. In the C programs, this is accomplished simply by adding the line #include "hdf.h" at the

beginning of the program. This line effectively includes all the needed constants and definitions from

the HDF software. When writing FORTRAN programs, this may also be done by simply adding an

include statement that brings in only the needed definitions and declarations (constants.f) from the

hdf.h header file. This is done by the following code: "include constants.f °. However, all FORTRAN

compilers (particularly the older ones) do not support the use of include statements. In this event, the

user must type in/declare all the constants and definitions found in the constants.f file. It is advised that

all declarations, whether through include statements or not, should be done at the beginning of the

program.

Example:

FORTRAN :

C DFACC RDONLY is defined in hdf.h

C if not available for FORTRAN then add

Parameter (DFACC RDONLY=I)

C"

#include "hdf.h"

main()

Return

Make all variable and parameter declarations

As with any program, the scientist/user should declare and initialize all variables and parameters at the

beginning of the program. This includes all variables and arguments that will be used by the HDF

commands to follow. The variable and parameter declarations needed for each call will be provided in

the example boxes of the individual steps. These statements always belong at the top of the program.

Return

Open file containing existing non-HDF data set and store in array

Before writing any data into HDF, the actual data first has to be accessed within the program. As is

normally done in non-HDF applications, the file containing the data that the user wishes to convert

into HDF must first be opened. After opening the file, the user reads and stores the data into a multi-

dimensional array that can be accessed by the HDF commands.

file://C:hHDF 99 HTML\File_writing.html 10/27/99

Fiie_writingdime Page4 of 14

For thepurposeof this tutorial, the non-HDF data set will be read from an existing file called wind.dat

into a multi-dimensional real array called rwind(XL,YL) where XL = 30 and YL = 30.

Example:

C:

main () {

FILE *infile;

const int XL : 30, YL : 30;

int i, j;

float rwind[XL] [YL];

infile = fopen("wind.dat", "r");

for(i=0; i<XL; i++)

for(j:0; j<XL; j++)

fscanf(infile, "_f", rwind[i] [j]);

FORTRAN:

real rwind (30, 30)

XL = 30

YL = 30

Open(unit=lS, file='wind.dat',form='formatted ')

Do I=I,XL

Do j=I,YL

Read(15,25) rwind(I,J)

Enddo

Enddo

Return

Initialize access to the SD interface and open new HDF file

The first real HDF programming step actually accomplishes 2 things:

• Creates and opens a new HDF file

• Initializes and opens the SD interface.

This is done by the following command:

sd_id = sfstart(filename, access_mode) (FORTRAN)

or

sd_id = SDstart(filename, access_mode); (C)

where

file://C:U-IDF 99 HTML\File_writing.html 10/27/99

File_writingdone Page5 of 14

sd id = HDF file id returned by the sfstart/SDstart command

fi_ename = the name of the new HDF file (character string)

access mode = Type of access required for this file

All available options for the access-mode argument are defined in the hdf.h header file mentioned

previously and need only to be identified for all C and most FORTRAN operations. All options begin

with the prefix 'brAce "and include:

DFACC CREATE (File Creation Access)

DFACC RDONLY (Read Access)

DFACC RDWR (Read and Write Access)

As mentioned previously, these definitions are stated in the hdf.h header file.

In the event that the user's FORTRAN compiler can not handle include statements such as those found

in the hdf.h header file, the DFACC_ variable must be defined, along with its assigned value, at the

beginning of the program. This is done by a code line such as:

parameter (DFACC_RDONLY = i) (For FORTRAN only)

For the purpose of this tutorial, the new HDF file will be called wind.hdf.

Example:

FORTRAN:

integer*4 sd id

integer sfstart

parameter (DFACC CREATE = 4)

sd id : sfstart(wind.hdf, DFACC CREATE)

C_

#include "hdf.h"

/* Includes all the access mode definintions */

int32 sd id;

sd id = SDstart(wind.hdf, DFACC CREATE);

Return

Define characteristics of new HDF data set(s)

After initializing the SD interface and opening and assigning a file id (sd_id) to the HDF file to be

used, the next step is to define a new HDF Scientific Data Set (SDS) to which the existing non-HDF

data will be written. This is done by the following command:

sds id = sfcreate (sd id, name, number type, rank, dim sizes) (FORTRAN)

file://c:hqDF 99 HTMLkFile_writing.html 10/27/99

File_writingdone Page6 of 14

or

sds_id = SDcreate (sd_id, name, number_type, rank, dim_sizes); (C)

It should be noted that sfselect/SDselect may also be used to write to a previously defined HDF data

set.

where

name =

sds id = HDF SDS array id returned by the sfcreate/SDcreate command

sd Td = the new HDF file id created in the previous step (sfstart/SDstart)

name of new SDS (in ASCII character string)

number_type = data type of data set

This argument always takes the form of DFNT_X, where X is the data type to be used. A list of all the

data types supported by the API can be found in the HDF User's Guide. For most of the data types,

8,16,32 and 64-bit types are supported. A few of the available options are provided below:

HDF Data Type

DFNT_FLOAT32

DFNT_DOUBLE

DFNT_CHAR8

DFNT_UCHAR8

DFNT_lNT16

DFNT UINT16

DFNT_NINT16]

DFNT_NUINT16]L

DFNT_NFLOAT32]

Description

32 bit floating point real

double precision reals

8 bit character type

8 bit unsigned character type

16 bit integer type

16 bit unsigned integer type

16 bit native integer

16 bit native unsigned integer

32 bit native floating point real

Similar to the DFACC_ argument, all data types are defined in hdf.h. Once again, for FORTRAN

compilers unable to access these include files, the DFNT_ argument, and its' assigned value, must be

defined at the beginning of the program using code like this:

parameter (DFNT_INTI6 = 22) (taken from constants.f within the hdf.h file)

rank = number of dimensions in array to be written (integer)

This value is best specified at the beginning of the program along with the other various declarations

with a simple line of code:

rank = 2, 3,....

file://c:hqDF 99 HTML\File_writing.html 10/27/99

File_writingdone Page7 of 14

dim_sizes = An array defining the size of each dimension of the data array (integer)

As with the "rank" argument, this variable is best specified with the other variable declarations at the

top of the program. In FORTRAN, an example for a 2-D, 30 X 30 array would be:

dimsizes(1) = 30 (FORTRAN)

dimsizes (2) = 30

or

dimsizes[0] = 30; (C)

dimsizes[l] = 30;

EXAMPLE: For an existing data set to be written as a 2-D array of 30 (x direction) by 30(y

direction), and as an 8-bit integer type, the following commands need to be used:

rank = 2 (FORTRAN)

dimsizes(1) = 30

dimsizes(2) = 30

sds_id = sfcreate(sd_id, newarray_l, DFNT_INT8, rank, dimsizes)

or

rank = 2; (C)

dimsizes[0] = 30;

dimsizes[l] = 30;

sds id = SDcreate(sd_id, "newarray_l", DFNT_INT8, rank, dimsizes) ;

Example:

FORTRAN :

C:

integer*4 DFNT INTI6

integer sds id7 rank

integer dims(2), sfcreate
rank = 2

XL = 3O

YL = 30

dims(l) : XL

dims(2) = YL

sds id : sfcreate(sd id, winds, DFNT INTI6, rank, dims

int32 sds id;

int32 dims[2], rank;

rank : 2;

XL : 30;

YL : 30;

dims[0] : YL;

dims[l] = XL;

sds id = SDcreate(sd id, winds, DENT INTI6, rank, dims

file://C:kHDF 99 HTMLWile_writing.html 10/27/99

File_writingdone Page8 of 14

Return

Write existing data set/array to a new data array in a new HDF file

Atter initializing the API and defining the new HDF file and new HDF SDS to be written to, the next

step is to actually write the existing non-HDF data into the HDF file by using the SDwritedata

(sfwdata) command. This command is used to write either all or part of the existing n-dimensional

data set (termed a "slab") into the sdsid array with the same number of dimensions. In addition, the

size of each dimension of the data "slab" must be the same or smaller then the corresponding

dimension of the sds_id. The SDwritedata/sfwdata command is used in the following fashion:

ret=sfwdata (sds_id, start, stride, edge, data) (FORTRAN)

or

ret=SDwritedata (sds_id, start, stride, edge, data); (C)

It should be noted that there are two versions of the write routine in FORTRAN, "sfwdata" is used for

numeric data while "sfwcdata" is used for writing character data

where

sds id = the SDS id (identifier) determined and returned by using SDcreate

start = An array which identifies where in the SDS that the writing will begin

The start array identifies the location or position in the SDS where the writing of the data "slab" will

begin. This array must have the same number of dimensions (rank) as the SDS and can not be larger

(in each dimension) then the SDS array. The declaration of the start variables can be done at the top of

the program or just preceding the call of the sfwdata (SDwritedata) command. As an example, to

write the existing data set to the beginning of a new 2-dimensional SDS the following must be

specified:

start(l) = 0 (FORTRAN)

start(2) = 0

start[0] = 0; (C)

start[l] = 0;

If the user wishes to begin writing the data at a location other then the beginning of the new data set,

say at a first dimension (X) of 15, the declarations would be:

start(1) = 15 (FORTRAN)

start(2) = 0

file://C:U-IDF 99 HTMLkFile_writing.html 10/27/99

File_writingdone Page 9 of 14

Or

start[0] = 15; (C)

start[l] = 0;

stride = An array specifying the interval between written values in each dimension

The stride argument specifies, for each dimension, the interval between consecutive written values of

the data set. In other words, how many array locations are skipped with each writing of the data? Like

the start array, the stride argument is predefined before calling the sfwdata (SDwritedata) command,

either directly before the call or at the top of the program.

If the user does not wish to skip any array locations in a new 2-dimensional SDS, the following is to
be declared:

stride(l) = 1 (FORTRAN)

stride(2) = 1

or

stride(0) = I; (C)

stride(l) = i;

However, if the user wishes to skip every other X (dimension 1) location, the foDowing would be
used:

Or

stride(0) = 2; (C)

stride(1) = I;

edge = An array defining the number of data values to be written in each dimension

The edge array defines the number of data values/elements that will be written along each dimension

of the multi-dimensional SDS army. In plain terms, this argument defines the size of the data slab (all

or part of the data) to be written to the new SDS army and each dimension.

edge must be specified for each dimension of the data set and SDS array, and can not be larger then

the entire length of the newly defined (from sfcreate) array it is being written to.

The edge is affected by the stride. If stride = 2, then the edge will need to be divided by two, because

it will be writing to every other location along a dimension.

Similar to stride and start, the edge argument needs to be defined prior to the calling of the sfwdata

(SDwritedata) command, whether it be at the top of the program or directly before the routine call.

file://C:hLIDF 99 HTML\File_writing.html 10/27/99

stride(l) = 2 (FORTRAN)

stride(2) = 1

File_writing done Page 10 o f 14

As an example, most often, the user will wish to write the entire non-HDF data set into a new array

that starts from the beginning and does not contain any missing data or blanks. For a 2-dimensional

array of 30X30, read and stored into the data army "rwind", this can be done, in FORTRAN, by:

start(l) = 0

start (2) = 0

stride(1) = 1

stride(2) = 1

edge(1) = 30

edge(2) = 30

retn = sfwdata(sds_id, start, stride, edges, rwind)

Or in C by:

Start[0] = 0;

Start[l] = 0;

Stride[0] = I;

Stride[l] = I;

Edge[0] = 30;

Edge[l] = 30;

retn = SDwritedata(sds id, start, stride, edges, rwind);

data = The array or buffer of data to be written

The file containing this data should be opened at the beginning of the program and the data read in and

stored into the necessary arrays before beginning the HDF operations.

Example:

FORTRAN:

integer start(2), edges(2), stride(2)

integer retn, XL, YL

integer s fwdata

c Define the location, pattern and size of data set that

c will be written to.

XL = 30

YL : 30

start (i) = 0

start (2) : 0

edge(1) : XL

edge(2) : YL

stride(l) = 1

stride(2) : 1

c write the data

retn : sfwdata(sds id, start, stride, edges, rwind)

C: int32 retn;

int32 start[2], edges[2], stride[2] ;

XL : 30;

YL : 30;

/*Define the location, pattern and size of

For (i:0; i<rank; i++) {

start[i] : 0;

the dataset*/

file://C:_LIDF 99 HTMLkFile_writing.html 10/27/99

File_writingdone Page11of 14

edge[i] : dims[i];

edge(l) : 30;

/* Write the stored data to "newarray". The 5th argument must be exp]icitl_

a generic pointer to conform to the API definition for SDwritedata */

retn : SDwritedata(sds_id, start, NULL, edges, (VCIDP)newarray);

Return

Optional operation: Provide metadata for HDF files or data sets

Using the general attribute routines for user-defined attributes described in section 6, attributes can be

written and attached to the file itself, the data set, and the dimension in question. This is not required,

but up to the choice of the user.

After opening the file and obtaining the file id (sd_id) using the sfstart/SDstart command, the

following can be done

1) FILE ATTRIBUTES:

To assign attributes to a file, the following command is used:

SDsetattr (sd_id, attr_name, data_type, count, value); (C)

sfsnatt(sd_id, attr_name, data_type, count, value) (FORTRAN)

There are two FORTRAN versions of the routine, sfsnatt writes numeric attribute data while sfcatt
writes character attribute data.

where

sd id= file identifier

attr_name = ASCII string containing the name of the attribute (i.e.,

data_type = data type of attribute values (i.e., DFNT_INT32)

count = total number values/characters in the attribute

value = text string or label

"file conten

2) ARRAY ATTRIBUTES

After each data set identifier (sds_id) is obtained through the SDselect/sfselect command, the

following is used:

SDsetattr (sds_id, attr_name, data_type, count, value); (C)

sfsnatt(sds id, attr name, data type, count, value) (FORTRAN)

file://C:_HDF 99 HTML\File_writing.html 10/27/99

File_writing-done Page12of 14

where

sds id= data set identifier

rest as above

3) DIMENSION ATTR/BUTES

After getting the identifier for a dimension using the sfdimid/SDgetdimid command, the following is
used:

SDsetattr (dim_id, attr name, data_type, count, value); (c)

sfsnatt (dim_id, attr_name, data_type, count, value) (FORTRAN)

where

dim id= Dimension identifier

rest as above

4) CLOSING ATTRIBUTES

After setting/writing the attributes, the user must terminate access to the data array (using the

SDendaccess/sfendacc commands) and the file and SD interface (using the SDend/sfend commands).

Example:

1) FILE ATTRIBUTES:

FORTRAN:

sd id = sfstart("wind.hdf", DFACC RDWR)

retn : sfsattr(sd id, "Contents o_ file", DFNT CHARS, 16, "horizontal winds

C_

sd id:SDstart ("wind.hdf", DFACC RDWR) ;

retn: SDsetattr (sd id, "Contents of file", DENT CHARS, 16, "horizontal

2) ARRAY ATTRIBUTES

FORTRAN:

sds id:sfselect (sd id, 0)

retn = sfsattr(sds id, "format", DFNT INT32 4 "F8 2"_
_ , I •

file://C:_-IDF 99 HTML_File_writing.html 10/27/99

C_

sds id=SDselect(sd id, 0) ;

retn= SDsetattr (sds_id, "format", DFNT INT32, 4, "F8.2") ;

3) DIMENSION ATTRIBUTES

FORTRAN:

dim id=sfdimid (sds ld, 0)

retn : sfsattr (dim rd, "dim metric", DFNT CHARS, i0, "meters/sec")

C_

dim_id=SDgetdimid (sds id, 0) ;

retn: SDsetattr (dim id, "dim metric", DFNT CHARS, i0, "meters/sec") ;

Return

Terminate / close access to all files, data sets, and APIs

After writing the data to the new SDS array within the new HDF file, it is necessary to terminate or

close access to the new data set in order to prevent any possible loss of data. This is done by the
following:

retn = sfendacc(sds_id) (FORTRAN)

or

retn = SDendaccess(sds_id); (C)

In addkio_ the API c_led within the program mu_ also be closed to prevent any data loss:

retn = sfend(sd_id) (FORTRAN)

retn = SDend(sd id) ; (C)

or

Example:

FORTRAN : integer sfendacc, sfend

retn = sfendacc(sds id)

file://C:hHDF 99 HTMLkFile_writing.html 10/27/99

File_writingdone Pagei4 of i4

C:

retn: sfend(sd id)

retn = SDendaccess(sds id) ;

retn= SDend(sd id);

Return

Execute program

Execute like a normal FORTRAN or C program.

Return

file://CAHDF 99 HTML_File_wfiting.html 10/27/99

HDF filesdone Page i of 2

Obtaining Information on Existing HDF Files

As mentioned previously, a single HDF file may contain more than one scientific data set (or images,

tables, etc.). Within the SD interface (and other interfaces for the various data types), there are

routines that can be called within short programs, C or FORTRAN, which help the user do the

following:

Determine the contents of an HDF file

Obtain information on individual data sets or images

Previous Main Topic Next Main Topic

Return to Main Topics

Determine the contents of an HDF file

Before reading an HDF file, it might be necessary for the user to determine the number of data sets

within the file, and the attributes of the file itself.

After initializing and accessing the Application interface (in this case, the SD and GR interfaces for,

respectively, scientific data sets and images (with associated paettes), this can be done using the

following statements:

and

SDfileinfo(sd_id, n datasets, n file attr); (C)

GRfileinfo(gr id, n__mages,nfile_attr_

sffinfo(sd_id, n datasets, n file attr)

mgfinfo(gr_id, n_Tmages,n_file_attr)

(FORTRAN)

where

sd id= file id number

gr_id= GR interface identifier
n datasets= Number of data sets within the

n_images= number of images within the file

file n file attr= number of file

Return to top

Obtain information on individual data sets

Before reading a particular data set or image from an HDF file, the user may need to know the rank,

dimension sizes, data type, and number of attributes of the data array.

file://CAHDF 99 HTML\HDF files.html 10/27/99

HDF filesdone Page2 of 2

After the user has initiated and accessed the interface (for example, the GR interface for images and

the SD interface for data arrays) and selected the data set by using the sfselect/SDselect (data set) or

mgselct/GRselect (image) in a short FORTRAN (C) program, this information can be retrieved using

the following calls:

SDgetinfo (sds_id, name, rank, dim sizes, num_type, attributes);

GRgetinfo(ri_id, name,n_comps,data type, interlace mode,dim_sizes,n_attrs)

and

sfginfo (sds_id, name, rank, dim_sizes, hum_type, attributes)

mgginf(ri_id, name,n_comps,data type, interlace_mode,dim_sizes,n_attrs)

(c)

(FC

where

sds id = data set id number

ri Td = raster image id number

name = name of corresponding data set

rank = rank of corresponding data set

dim sizes = dimensions of corresponding data set

num_type = data type of corresponding data set

data_type = data type of corresponding image
attributes = number of attributes of corresponding data set

n_comps = number of components

interlace mode = interlacing mode of data

n attrs = number of sttributes

Return to top

file://C:U-IDF 99 HTMLkHDF files.html 10/27/99

ReadingDatafi'omanHDF File Page1of 10

Reading a Scientific Data Set from an HDF File

The following sections detail how a user may utilize the HDF library and the SD API within a

computer program to read a scientific data set from an HDF file. In this section, the tutorial will

concentrate on using the FORTRAN programming language and the SD API. However, examples of

the appropriate C code will also be given for certain steps. For the purpose of this tutorial, we are

choosing the example of reading an entire data array that is the first and only data set in the HDF file.

Similar to writing an HDF file, the user should follow these simple steps:

• Does the current version of HDF support your computer platform and operating system?

• Downloading and Installing the HDF library

• Are all libraries and programs properly linked and compiled?

• Writing a short program to read an HDF data set

Previous Main Topic Next Main Topic

Return to Main Topics

Does the current version of HDF support your computer platform and operating system?

As outlined in Section 3, the HDF library can not be run on just any available computer platform or

operating system. Before downloading the HDF library software, the user should make sure that the

current release of HDF supports his/her computer and operating system. Otherwise, the user will be

unable to work with the HDF library and files. There is also a possibility that previous releases of HDF

may support the Users computer platform while the latest version does not. In this event, the user may
wish to obtain the earlier software.

Return to top

Downloading and Installing the HDF library

The HDF library and soliware is public domain software and available free to all users. The library and

code can be downloaded from the NCSA anonymous tip server (lip://fipncsauiuc edu/). Directions

on how to install the HDF library can also be found at this location.

Return to top

Are all libraries and programs properly linked and compiled?

file://C:_HDF 99 HTMLkFilereading.html 10/27/99

ReadingDatafrom anHDF File Page2 of i 0

In order to eventually run the HDF sottware, the library and the needed application routines and

programs must first be properly compiled and linked. As of the current release ofHDF (4.1rl), four

separate libraries must be compiled and linked. These are the libmfladf.a, libdf.a, libjpeg.a, and libz.a

libraries. Provided below are examples of the command(s) that can be used for this action. It must be

noted that the order in which the libraries are linked is important and should not vary fi'om the order

shown below:

For C programs:

cc -o <your program> <your program>.c \

-I<pathf for hdf include directory>\

-L<path for hdf libraries> -Imfhdf -idf -ljpeg -iz

For FORTRAN programs:

f77 -o <your program> <your program>.f \

-I<path for hdf include directory>\

-L<path for hdf libraries> -imfhdf -idf -ljpeg -iz

For the various commands needed to link and compile the HDF library on each individual platform,

please see Section 3:Compiling the HDF Library.

Return to top

Writing a short program to read an HDF data set

• Select a programming language

• Make sure all include files are in place

• Make all variables and parameter declarations

• Initialize access to the SD interface and open HDF file
• Select data set to be read from the HDF file

• Read an existing data set/array
• Write non-HDF data to a file

• Optional operation: Get and Read Metadata

• Terminate/Close access to all files, data sets, and APIs

• Execute program

Return to top

Select a programming language

As mentioned previously, the HDF library and programs can only be run by using either the C or

FORTRAN programming language. This choice is up to the user depending on availability and the

file://C:U-IDF 99 HTMLkFile_reading.html 10/27/99

ReadingDatafrom anHDF File Page3 of i0

languageheor shefeelsmostfamiliarandcomfortablewith.

Return

Make sure all include files are in place

Earlier, it was noted that a series of standard HDF definitions and declarations of file access codes (i.e.

read, write, etc.) and data types (i.e. integer, character) must be included within the programs that the

user writes to utilize the various application routines. In the C programs, this is accomplished simply

by adding the line #include "hdf.h" at the beginning of the program. This line effectively includes all

the needed constants and definitions from the HDF software. When writing FORTRAN programs, this

may also be done by simply adding an include statement that brings in only the needed definitions and

declarations (constants.f) from the hdf.h header file. This is done by the following code: "include

constants.ft. However, all FORTRAN compilers (particularly the older ones) do not support the use

of include statements. In this event, the user must type in/declare all the constants and definitions

found in the constants.f file. It is advised that all declarations, whether through Include statements or

not, should be done at the beginning of the program.

Return

Make all variables and parameter declarations

As with any program, the scientist/user should declare and initialize all variables and parameters at the

beginning of the program. This includes all variables and arguments that will be used by the HDF

commands to follow. The variable and parameter declarations needed for each call will be provided in

the example boxes of the individual steps. These statements always belong at the top of the program.

Return

Initialize access to the SD interface and open HDF file

The first real HDF programming step actually accomplishes two things:

• Opens the existing HDF file

• Initializes and opens the SD interface.

This is done by the following command:

sd id = sfstart(filename, access mode) (FORTRAN)

or

sd id = SDstart(filename, access mode) (C)

file://C:U-IDF 99 HTML\Filereading.html 10/27/99

ReadingData from anHDF File Page4 of i 0

where

sd id = HDF file id returned by the sfstart/SDstart command

fiTename = the name of the existing HDF file (character string)

access mode = Type of access required for this file

All available options for the access-mode argument are defined in the hdf.h header file mentioned

previously and need only to be identified for all C and most FORTRAN operations. All options begin

with the prefix "DFACC_" and include:

DFACC CREATE (File Creation Access)

DFACC RDONLY (Read Access)

DFACC RDWR (Read and Write Access)

As mentioned previously, these definitions are stated in the hdfh header file.

In the event that the user's FORTRAN compiler can not handle include statements with the header file

(hdf.h), the DFACC_ variable must be defined, along with its assigned value, at the beginning of the

program. This is done by a code line such as:

parameter (DFACC RDONLY = I) (For FORTRAN only)

Example:

FORTRAN:

C:

integer*4 sd id

integer sfsta[t

parameter(DFACC RDONLY = i)

sd id=sfstart("wind.hdf", DFACC RDONLY)

#includehdf.h"

int32 sd id;

sd id:Sdstart("wind.hdf", DFACC RDONLY) ;

Return

Select data set to be read from the HDF file

After initializing the SD interface and opening and assigning a file id (sd_id) to the HDF file to be

used, the next step is to select the HDF Scientific Data Set (SDS) which will be read. This is done by

the following command:

sds id = sfselect

sds id = SDselect

(sd_id, sds_index) (FORTRAN)

or

(sd id, sds index) (C)

file://C:\HDF 99 HTML\File_reading.html 10/27/99

ReadingDatafrom anHDF File Page5 of i0

where

Example:

FORTRAN :

C

C:

Return

sds id = HDF SDS array id returned by the sfselect/SDselect command

sd Td = the HDF file id created in the previous step (sfstart/SDstart)

sds index = index number of data set within file (i.e.

integer sds_id, sds index, sd_id

integer sfselect

sds index = 0 represents the first

sds-id = sfselect(sd id,0)

int32 sd id, dims[2] ;

dims[0] = YL;

dims[l] : XL;

sds id = Sdselect (sd id, 0) ;

data set

0 = f

Read an existing data set/array

After initializing the API and selecting the HDF file and HDF SDS to be read to, the next step is to

actually read the existing HDF data by using the SDreaddata (sfi'data) command. This command is

used to read either all or part of the existing n-dimensional data set (termed a "slab") into the sdsid

array with the same number of dimensions. In addition, the size of each dimension of the data "slab"
must be the same or smaller then the corresponding dimension of the sdsid. The SDreaddata/sfrdata

command is used in the following fashion

ret=sfrdata (sds_id, start, stride, edge, data) (FORTRAN)

or

ret=SDreaddata (sds_id, start, stride, edge, data); (C)

It should be noted that there are two versions of the read routine in FORTRAN. The sfrdata routine

reads numeric scientific data while sfrcdata reads character scientific data.

where

sds id = the SDS id (identifier) determined and returned by using SDcreate or SDselect

(sfcreate/sfselect)

start = An array which identifies where in the SDS that the reading will begin

The start array identifies the location or position in the SDS where the reading of the data "slab" will

file://C:U-IDF 99 HTML\File_reading.html 10/27/99

ReadingDatatrom anHDF File Page6 of 10

begin.Thisarraymusthavethesamenumberof dimensions(rank)asthe SDSandcannot belarger
(in eachdimension)thentheSDSarray.Thedeclarationof thestartvariablescanbedoneat thetop of
theprogramor just precedingthecallof thesfi'data(SDreaddata)command.As anexample,to read
theexistingdatasetto thebeginningof anew2-dimensionalSDSthefollowingmustbespecified:

start(l) = 0 (FORTRAN)

start(2) = 0

or

start[0] = 0; (C)

start[l] = 0;

If the user wishes to begin reading the data at a location other then the beginning of the data set, say at

a first dimension (X) of 15, the declarations would be:

start(l) = 15 (FORTRAN)

start(2) = 0

or

start[0] = 15; (C)

start[l] = 0;

stride = An array specifying the interval between written values in each dimension

The stride argument specifies, for each dimension, the interval between consecutive written values of

the data set. In other words, how many array locations are skipped with each reading of the data. Like

the start array, the stride argument is predefined before calling the sfrdata (SDreaddata) command,

either directly before the call or at the top of the program.

If the user does not wish to skip any array locations in a new 2-dimensional SDS, the following is to
be declared:

stride(l) = 1 (FORTRAN)

stride(2) = 1

or

stride[0] = I; (C)

stride[l] = I;

However, if the user wishes to skip every other X (dimension 1) location, the following would be
used:

stride(l) = 2 (FORTRAN)

stride(2) = 1

or

stride[0] = 2; (C)

stride[l] = I;

file://C:ht-IDF 99 HTML\Filereading.html 10/27/99

ReadingDatali-omanHDF File Page7 of 10

edge= An arraydefiningthenumberof datavaluesto bereadin eachdimension

Theedgearraydefinesthenumberof datavalues/elementsthat will bereadalongeachdimensionof
themulti-dimensionalSDSarray.In plainterms,thisargumentdefinesthe sizeof thedataslab(all or
partof thedata)to bewritten to thenewSDSarrayandeachdimension.

Theparameteredgemustbespecifiedfor eachdimensionof thedatasetandSDSarray,andcannot
belargerthentheentirelengthof thearraybeingread.

Similarto strideandstart,the edge argument needs to be defined prior to the calling of the sfrdata

(SDreaddata) command, whether it be at the top of the program or directly before the routine call.

The file containing this data should be opened at the beginning of the program and the data read in and

stored into the necessary arrays before beginning the HDF operations.

As an example: Most otten, the user will wish to read an HDF file which contains one data set

(winddata), which starts fi'om the beginning and does not contain any missing data or blanks.

For a 2-dimensional array of 30X30, read and stored into the data array "testdata", this can be done

by:

start(1) = 0

start (2) = 0

stride(1) = 1

stride(2) = 1

edge(l) = 30

edge(2) = 30

retn = sfrdata(sds_id,

(FORTRAN)

start, stride, edges, winddata)

or

start[0] = 0;

start[l] = 0;

stride[0] = I;

stride[0] = I;

edge[0] = 30;

edge[l] = 30;

retn = SDreaddata(sds_id,

(c)

start, stride, edges, winddata);

Example:

For reading the entire data set from an HDF file which contains only one 2-D array

FORTRAN:

integer start(2), edges(2), st[ide(2)

integer retn sfrdata

c Define the location, pattern + size of data to be read

YL : 30

XL = 30 start(1) = 0 start(2) = 0 stride(l) = 1

edge(2) = YL

retn= sfrdata(sds id, start, stride,edges,winddat)

C:

/_ Define the location, pattern +

YL : 30;

XL : 30;

file ://C :LLIDF 99 HTML\Fflereading.html

size of data to be read */

stride (2) : I edg

10/27/99

ReadingData fi'ornani_F File Page8 of 10

dims[O] - YL;

dims[l] = XL;

start[O] : O;

start[l] : O;

stride[O] = i;

stride[l] : i;

edge[O] : dims[O] ;

edge[l] = dims[l] ;

retn = SDreaddata(sds id, start,stride,edges,winddat);

Return

Write non-HDF data to a file

Using standard FORTRAN and C statements for writing, the non-HDF data is written into a new file

(storage). In addition, the user may wish to print out all or parts of the HDF data set to view the data

or as a check of the procedure/operation.

Return

Optional operation: Get and Read Metadata

After opening the HDF file using the sfstart/SDstart, the first step is to see if the file or data sets do

indeed contain attributes. This is done by using the following command:

attr index = SDfindattr (sd_id, attr name); (C)

attr_index = sffattr (sd_id, attr_name) (FORTRAN)

where

attr index = valid attribute index returned if attribute exists

sd id = file identifier

at[r name = name of attribute (i.e.,Contents of file")

If there is a attribute index, the name, data type (num_type), and count (number of characters) of the
attribute can be obtained:

retn= SDattrinfo(sd id, attr index, attr_name, num_type, count); (

retn= sfgainfo (sd_[d, attr__ndex, attr_name, num_type, count) (FORTRAN)

After completing these operations, the attributes can be read using the following:

file://C:kHDF 99 HTML\File_reading.html 10/27/99

ReadingDatafrom anHDF File Page9 ot 10

retn= SDreadattr (sd_id, attr index, buffer); (C)

retn= sfrattr (sd_id, attr_index, buffer) (FORTRAN)

where

buffer is allocated to hold the attribute data

The above steps can also be followed for each data set within the file by getting the data set id (sds_id)

of the data, finding a particular attribute (i.e.,"Units") and getting and reading the data.

Example:

FORTRAN :

and

C"

and

sd id=sfstart ("wind.hdf", DFACC RDONLY)

attr index: sffattr (sd id,"file-contents")

retn _ sfgainfo (sd id, attr index, "file contents",

tern= sfrattr (sd-id, attr--index, buffer)

data_type, count)

sds id:sfselect (sd id, O)

attr index: sffattr-(sds id,"units")

retn= sfgainfo (sds id, attr index, "units",

tern= sfrattr (sds id, attr index, buffer)

datatype, count)

sd id:SDstart ("wind.hdf", DFACC RDONLY) ;

attr index = SDfindattr (sd id,"fTle contents");

retn 7 SDattrinfo (sd_id, a_tr_index_"file_contents",

retn: SDreadattr (sd id, attr index, buffer);

datatype, count);

sds id:SDselect (sd id, 0);

art7 index: SDfindattr (sds id,"units");

retn= SDattrinfo (sds id, attr index,"units", data_type,

retn= SDreadattr (sds id, attr index, buffe[);

count);

Return

Terminate/Close access to all files, data sets, and APIs

After writing the data to the new SDS array within the new HDF file, it is necessary to terminate or

close access to the new data set in order to prevent any possible loss of data. This is done by the

following:

retn = sfendacc(sds id) (FORTRAN)

or

retn = SDendaccess(sds_id) (C)

In addition, the API called within the program must also be closed to prevent any data loss:

retn = sfend(sd id) (FORTRAN)

file://C:LqDF 99 HTML\Filereading.html 10/27/99

ReadingDatati'omanHDFFile Page10of 10

Example:

FORTRAN :

retn = SDend(sd_id)

integer sfendacc, sfend

retn= sfendacc(sds id)

retn : sfend(sd id)

or

(c)

C:

Return

retn

retn

= SDendaccess(sds id);

= SDend(sd id);

Execute program

Execute like a standard FORTRAN or C program.

Return

file://C:\HDF 99 HTMLkFile_reading.html 10/27/99

Browsingdone Page1of 1

Browsing and Visualizing HDF Data

With the recent explosion of data volumes, numerous visualization and browsing tools have been

developed which allow users to quickly view the contents ofdatasets created elsewhere. This has

proven especially beneficial for users of HDF.

In fact, many visualization tools have been created specifically with HDF in mind. The NCSA

anonymous tip server provides a set offi'ee software that enables the user to visualize and browse

HDF files. Tools include the JAVA-based HDF Browser and the Scientific Data Browser. In addition,

the following are available but have not been updated to run with the current version ofHDF: NCSA

Collage, NCSA Datascope, NCSA XDataSlice, and NCSA Polyview.

Besides NCSA, there are other sites and centers that also provide public domain (fi'ee) software that

can be used to browse and visualize HDF files. This sottware includes, among others: LinkWinds,

GRASS, FREEFORM, VISTAS, ImageMagick, and Envision. Visualization tools and software such

as LinkWinds and EOSV1EW can be used for working with HDF-EOS type data (point, swath and

grid data sets).

Finally, there are also commercial (for a fee) software packages that can be used to work with and

browse HDF files. These include: DataExplorer, Spyglass, PV-Wave, Wavefront, IDL, AVS, IRIS

Explorer, Transform, and ER Mapper.

Please see Section 4: HDF Browsing and Visualization Tools for further detail, including internet
address, on the above software.

Previous Main Topic Next Main Topic

Return to Main Topics

file://C:hqDF 99 HTML_Browsing.html 10/27/99

ExamplePrograms Page1of 7

Example Programs

The following is a list of sample programs that illustrate how the HDF library, and the SD API, can be

used to work with HDF files. The example programs are given in the FORTRAN programming

language. However, the detailed steps for all languages are the same. Only the syntax code particular

to each language should be different.

Writing an SDS in HDF

Writing Attributes in HDF

Writing the SDS and attributes in HDF

Reading an HDF file

Reading HDF attributes (files and data sets)

Next Main Topic

Return to Main Topics

Writing an SDS in HDF

FORTRAN:

C

C

C

PROGRAM WRITDATA

integer*4 sd_id, sds_id, rank
integer*4 XL, YL

integer dims(2), start (2), edges (2), stride

integer i, j, k, retn

integer sfstart, sfcreate, sfwdata, sfendacc,

real rwind(30, 30)

(2)

sfend

DFACC CREATE and DFNT INTI6 are defined in hdf.h but may have

to be-defined within the program for certain FORTRAN compilers

integer*4 DFACC_CREATE, DFNT_INTI6

parameter (DFACC_CREATE = 4, DFNT INT16=22)
rank = 2

XL = 30

YL = 30

Create and open a new HDF file and initiate the SD interface

sd id = sfstart('wind.hdf', DFACC CREATE)

file://CAHDF 99 HTML\Examples.html 11/2/99

ExamplePrograms Page2 of 7

C

C

C

C

C

12

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Define the rank (number of dimensions) and dimensions (size) of the

HDF Scientific Data Set (SDS) to be created.

dims(l) = XL

dims(2) = YL

Create the HDF SDS (sfselect would be used if writing to an

existing HDF file or data set)

sds_id = sfcreate(sd_id, 'winds', DFNT_INTI6, rank, dims)

Open and read the existing non-HDF data set into an array (rwind)

Open (unit=10, file='wind.dat', form='formatted')

Do j = 1,30

Read(10, 12) (rwind(i, j),i = 1,30)

Format(30(f4.1,1x))

Enddo

Define where in the file to write the data set (start--location),

the pattern of the data (stride--skip any values??), and the size

of the data set (edges) to be written to. This is done for each

dimension, start(x) = 0 is for writing at the beginning of the

newly created SDS and stride(x) = 1 signifies that no data is to

be skipped in the writing.

start(1) = 0

start(2) = 0

edges(1) = XL

edges(2) = YL

stride(1) = 1

stride(2) = 1

Write the the stored data (in the array rwind) to the new SDS

retn= sfwdata(sds_id, start, stride, edges, rwind)

Terminate access to the array

retn = sfendacc(sds_id)

Terminate access to the SD interface and close the HDF file

retn = sfend(sd_id)

Stop
End

Return to top

Writing Attributes in HDF

FORTRAN:

PROGRAM WRITEATT

integer*4 sd id, sds id, dim id, retn

file://C:_-IDF 99 HTML£Examples.html 11/2/99

ExamplePrograms Page3 of 7

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

integer dims(2), start(2), edges(2), stride(2)

integer sfstart, sfselect, sfdimid, sfscatt, sfendacc, sfend

DFACC RDWR, DFNT INTI6 and DFNT CHAR8 are defined in hdf.h but

may have to be defined within the program for certain FORTRAN

compilers

integer*4 DFACC_RDWR, DFNT INT32, DFNT CHAR8

parameter (DFACC_RDWR = 3, DFNT_INTI6 = 22, DFNT_CHAR8 = 4)

Open the HDF file, initiate the SD interface, and get the
identifier for the file

sd_id = sfstart('wind.hdf', DFACC_RDWR)

Set an attribute the describe the contents of the file

retn = sfscatt(sd_id, 'file contents', DFNT_CHAR8, 15,'lidar_LOS_winds')

Get the identifier for the first data set (in this example, the

only data set)

sds_id = sfselect(sd_id, 0)

Set an attribute(s) for the data array itself. In this example, the
units of the data are defined

retn = sfscatt(sds_id, 'units', DFNT CHARS, 13, 'units = m/sec')

Terminate access to the data array

retn = sfendacc(sds_id)

Terminate access to the SD interface and close the HDF file

retn = sfend(sd_id)

Stop
End

Return to tOp

Writing the SDS and attributes in HDF

FORTRAN:

PROGRAM WRITESDS

integer*4 sd_id, sds_id, rank, dim_id

C

C

integer*4 XL, YL

integer dims(2), start(2), edges(2), stride(2)

integer i, j, k, retn

integer sfstart, sfcreate, sfwdata, sfendacc, sfscatt, sfend

real rwind(30, 30)

DFACC CREATE, DFACC RDWR, DFNT CHAR8 and DFNT INTI6 are defined

file://C:U-IDF 99 HTML_Examples.html 11/2/99

ExamplePrograms Page4 of 7

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

in hdf.h but may have to be defined within the program for certain

FORTRAN compilers

integer*4 DFACC_CREATE, DFNT_INTI6, DFNT CHAR8, DFACC RDWR

parameter (DFACC CREATE = 4, DFACC RDWR = 3, DFNT_INTT6 = 22, DFNT_CHAR8 = 4)

rank = 2

XL = 30

YL = 30

Create and open a new HDF file and initiate the SD interface

sd id = sfstart('wind.hdf', DFACC_CREATE)

Define the rank (number of dimensions) and dimensions (size) of the

HDF Scientific Data Set (SDS) to be created.

dims(1) = XL

dims(2) = YL

Create the HDF SDS (sfselect would be used if writing to an

existing HDF file or data set)

sds_id = sfcreate(sd id, 'winds', DFNT_INTI6, rank, dims)

Open and read the existing non-HDF data set into an array (rwind)

Open (unit = 10, file = 'wind.dat', form = 'formatted')

Do j=l,30

Read (I0, 12) (rwind(i, j),i=l,30)

12 Format (30(f4.1,1x))

enddo

Define where in the file to write the data set (start--location),

the pattern of the data (stride--skip any values??), and the size

of the data set (edges) to be written to. This is done for each

dimension, start(x) = 0 is for writing at the beginning of the

newly created SDS and stride(x)=l signifies that no data is to be

skipped in the writing.

start(1) = 0

start (2) = 0

edges(1) = XL

edges(2) = YL

stride(1) = 1

stride (2) = 1

Write the the stored data (in the array rwind) to the new SDS

retn = sfwdata(sds_id, start, stride, edges, rwind)

For writing attributes, set an attribute the describe the
contents of the file

retn = sfscatt(sd_id, 'file_contents', DFNT_CHAR8, 15,'lidar_LOS_winds')

Set an attribute(s) for the data array itself. In this example, the
units of the data are defined

retn = sfscatt(sds_id, 'units', DFNT_CHAR8, 13, 'units = m/sec')
C

C

C

file://C:\HDF 99 HTMLkExamples.html

Terminate access to the data array

11/2/99

ExamplePrograms Page5 of 7

C

C

C

retn = sfendacc(sds_id)

Terminate access to the SD interface and close the HDF file

retn = sfend(sd id)

Stop

End

Return to top

Reading an HDF file

FORTRAN:

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

PROGRAM READDATA

integer*4 sd_id, sds_id

integer*4 XL, YL

integer start(2), edges(2), stride(2)

integer i, j, k, retn

integer sfstart, sfselect, sfrdata, sfendacc, sfend

real rwind(30, 30)

DFACC RDONLY is defined in hdf.h but may have to be defined

within the program for certain FORTRAN compilers

integer*4 DFACC RDONLY parameter (DFACC_RDONLY = I)

MAX NC NAME (maximum # of characters) and MAX VAR DIMS (maximum

of dimensions) are defined in netcdf.h but may have to be defined

here.

integer*4 MAX NC NAME, MAX VAR DIMS

parameter (MAX NC NAME = 256, MAX VAR DIMS = 32)

integer dims(MAX_VAR_DIMS)
XL = 30

YL = 30

Open the HDF file and initiate the SD interface

sd_id = sfstart('wind.hdf', DFACC_RDONLY)

Select the first data set in the file (In this example, the only

dataset).

sds id= sfselect(sd id, 0)

To read from the data set, define the location (start--where in the

file), the pattern (stride--skip any values??),and the size(edges)

of the data. This is done for each dimension, start(x) = 0 is for

reading at the beginning of the file and stride(x) = 1 signifies

that no data is to be skipped in the reading.

dims(1) = XL

dims(2) = YL

start(1) = 0

start(2) = 0

stride(1) = 1

file://C:_IDF 99 HTMLkExamples.html 11/2/99

ExamplePrograms Page6 of 7

C

C

C

12

C

C

C

stride(2) = I

edges(1) = dims(1)

edges (2) = dims (2)

Read the array dataset

retn = sfrdata(sds_id, start, stride, edges, rwind)

Optional - Print out data (ASCII) read from the HDF file

In this example we are writing to the screen (*)

Do j = I, 30

write(*,12) (rwind(i,j),i=l,30)

format(30(f4.1,1x))

enddo

Terminate access to the array

retn = sfendacc(sds_id)

Terminate access to the SD interface and close the HDF file

retn = sfend(sd_id)

Stop
End

Return to top

Reading HDF attributes (files and data sets)

FORTRAN:

C

C

C

C

C

PROGRAM READATTR

integer*4 sd_id, sds id, units buffer

integer attr_index, data_type,-count, retn
character attr name * 13

character char-buffer * 20

integer sfstar[, sfrnatt, sfrcatt, sfgainfo, sffatr, sfselect

integer sfendacc, sfend

DFACC RDWR is defined in hdf.h but may have to be defined

within the program for certain FORTRAN compilers

integer*4 DFACC RDWR, DFACC RDONLY

parameter (DFACC_RDWR = 3, DFACC_RDONLY = 4)

Open the HDF file and initiate the SD interface

sd_id = sfstart('wind.hdf', DFACC_RDONLY)

Select the first data set in the file (In this example, the only

dataset).

sds_id= sfselect(sd id, 0)

Find the the attribute which describes the contents of the file

(usually 'file contents')

file://C:ht-IDF 99 HTMLkExamples.html 11/2/99

ExamplePrograms Page7 of 7

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

attr_index = sffattr(sd_id, 'file_contents')

Get information about the file attribute

retn = sfgainfo(sd_id, attr_index, attr_name, data type, count)

Read the file attribute data

retn = sfrcatt(sd_id, attr_index, char buffer)

Read the attributes for the first data set. First step is to get
the identifier.

sds_id = sfselect(sd_id, 0)

Find the attribute which defines the units of the data set

('units')

attr index = sffattr(sds_id, 'units')

Get information about the data set attribute

retn = sfgainfo(sds_id, attr_index, attr_name, data_type, count)

Read the data set attribute data

retn = sfrcatt(sds_id, attr_index, units_buffer)

Terminate access to the array

retn = sfendacc(sds_id)

Terminate access to the SD interface and close the HDF file

retn = sfend(sd_id)

Stop
End

Return to top

file://C:_-IDF 99 HTMLkExamples.html 11/2/99

HDFLaboratory Page1of 2

HDF Laboratory

questions

Section I: General Background: HDF and the HDF Library 1-9

Section II: Methods of Working with HDF Files 10-16

Section III: Scientific Data Model 17-20

Section IV: Attributes and Metadata 21-25

Section V: Using the SD API to write an Existing Data Set in HDF 26-36

Section VI: Querying/and Reading an HDF File 37-39

Lab Directions

Begin Lab

Previous Main Topic

Return to Main Topics

Lab Directions

The question and answer section of the tutorial was developed in Java script and is best viewed using

Microsoft Internet Explorer 4.0/50 and the latest release of Netscape navigator When navigating

through the tutorial, individual questions will be loaded on the same window and will be controlled by

the "Previous question" and "next question" buttons. However, new windows will be opened when the

user attempts to look at the preview material for each question and thus allowing the user to toggle

back and forth from the question and the material. To exit the tutorial, just click the "back" button

from the main question screen and this will bring the user back to the Laboratory menu. When done

with a "preview" window, simply close out the window and return to the question window/screen.

In this section we provide a series of questions designed for the users of the tutorial to test themselves

on how well they understood the material presented in the tutorial and, more importantly, to gauge

how comfortable they feel with HDF.

The questions more or less follow the order of the topics covered in the "Lecture" component of the

tutorial. The Laboratory menu provides a breakdown by section of the various questions, and allows

the user to select which topics they would like to focus their attention on.

file://C:LHDF 99 HTML\Lab.html 10/28/99

HDF Laboratory Page 2 of 2

Each question contains the question itself, a set of possible answers, navigation buttons ("Next

Question", "Previous Question", "Lab Menu", "End Lab", "Submit Answer") and, most importantly, a

feature which allows the user to review material pertaining to the question before answering or after

answering incorrectly. This is done by selecting the "Preview Material" button. Since some users will

like to take the "test" without any help and others will like to review material before answering

(particularly those who may have skipped directly to the Laboratory), it is up to the individual user to

decide how to proceed.

It should be noted that, in many cases, there is more than one correct answer for each individual

question. The user is allowed to select more than one response and will only receive an "Answered

Correctly" response if ALL correct responses have been selected.

To help the users qauge their understanding of HDF and how well they are answering the questions, a

"performance gauge" is provided in the upper right hand comer of each question. This quage provides

both a numerical (i.e. 7 of 11) and graphical (sliding color bar for 0 - 100%) representation of user

performance. The "score" found in the performance gauge only reflects the users' INITIAL answer to

each question.

The user's performance in the Laboratory is further diagnosed in a Progress Report reached by

clicking on the performance quage. Included in this report are:

• number of questions answered correctly

• number of questions answered incorrectly

• number of questions lett unanswered

• list of questions answered correctly

• list of questions answered incorrectly

• list of questions left unanswered

Return to top

file://C:httDF 99 HTMLLLab.html 10/28/99

HDF l_abo[atol.v_I"diclosollntemet Exploi'el

J

I.,_l,i_ _,:):,_,.,,,.,,,...:om,,_,-o,,_,,_.'_Q,._,_.,.,,,,
4_Olmmd _ __l.J_ks _lntemot E_ Nero 4_lemmet Slit

i ii ,]1, , r i

r'"<'"Tm

rF,alm

] i I i r

I

HDF Laboratory-IdicrosoftIniemet Explorer

SECTION g QUESTION 10

P Two _I_ d Pro_ Irlmfaou ed_b ImmIxoW_

I- CmwmndT_ui_

I- V_mbdm IdU,N_

F AIdl_ i_ov_

i s,-,_l

IIDF LaboraloL.u-MiclosollInlemel Ex Jlorel

B,Iek Fom_d Hm: _ Fa_m_i

jLit_ t_idi!!e'Web 4_OllmdEiuidll __Links _lntemeZEqdo_Nem _]lntmnetStlt
r i ii il i i i

SECTIONil _QUESTION 12

Ie/2

i i t fill ill i

• -'t ' ,

P API'Imu_ I_ e.,_ Imm ,_iII-inaixa_mm orI_ I_IIwI.

P kPl's ae avdla_ inbothC md Fod_m.

F ,_DI/ am_dlil, lui d dia tll_ UplediiHDF.

_mN(d !
]

HDF Laboralol_u - Miclo_oll Intemel Exslo[ef

H=_o_ Chann_l ,Uanm

]Lk_ _Beddthe_.A_b __.,_ChenMIGukle _)_L,k,k,. i_EqdkxwNem _]tnlmnelSMft
i i i i i ii i i ii

SECTIONH QLIESTIOH 14.

, ,,,l" , ,

4-_7

i

I
r- alow ii.mreef Io _11HDF _ s_ ou!_b d C m Fodml IXO_'eer_,

!-" allowthouJm to pede_ commonoperaEomm HDF lil_

r- ame,,eiablehxd elCliomardmu_.,_l_ hDAPI_

•-_ HDF Labolatoly-Miclo_oftIntemel Ex _lo,ef

j lID Edil _w Go F_ J:lelp

j '_ Fo+_,+a+d Slop I Relllmlh Home Sealch Fawmilm Hielmy CI_ Fulilomllm Mill

t_Be_ el IkeWeb 4__]13_ermelGuide 4_1_ Links t_lnlemel E.ploml New# _]lntmnel St_

SECTION iV QUESTION 22

5orb

! Um of HIDFcan Ixovide melad_ m I1_ cl_ or_ _ _pmviou_ delk_edb9 Ihe HDF lil_a_. I

r Tn.m

r Fail+

+ ii i I

N,imlQl,mllm J

"_"HDF Laborato,y-Miclo_:oftIntemetExplo,e,

E'le EdZ _'m _o F.ev=_ Heb

Back For_.,,aTd Stop Reflezh S_ Fev_tm Hiztol9

Lklks _BestdtheWeb _Q'mrmetOuk:le __l,.k_, ,l_lntemMEzckzm'Sew# _lntemetStelt

Progress Report for the HDF Laboratory

Numll_a__ ermmmdommc_.

NuBI_ ofqWlSomamwemdirconec_.

Numl_ ofqueztiombft_

5 12.0_

3 7.0_

31 79.0_

Betowisthe_ d qumio_ arrayed oom._.

2,3,4,9.16.

Bdowi=I1_rzt_ _ amwmd ircomct_.

5,7,6,

Bdowk II'm_ _ queCiombit _

1.6,,1Q,,11.12.13.14.15,. 17.18.18. 20.21.22. 23. 24.25. 26.Z'/. 2B.28. 30.31.
32,33.34.35.36.37.38,38. -

I

ATTACHMENT D

An HDF Tutorial for

Beginners : EOSDIS Users

and Small Data Providers

(Microsoft Word Version)

by

Mr. Steven Greco

Simpson Weather Associates

Charlottesville, VA

(In Fulfillment of NASA Contract NAG5-1961)

November 12, 1999

Main Topics

I •

•

•

o

•

•

•

•

•

i0.

II.

12.

13.

Tutorial Overview

An Introduction to HDF

The HDF Library: Software and Hardware

Methods of Working with HDF Files

Scientific Data API

Attributes and Metadata

Writing an HDF File

Obtaining Information on Existing HDF Files

Reading an HDF Data File

Example Programs

Browsing and Visualizing HDF Data

Laboratory (Question and Answer)

Acronym List

An HDF Tutorial for Beginners: EOSDIS Users

and Small Data Providers

I. Tutorial Overview

i. 1 Purpose of the Tutorial

The NASA ESDIS project selected the Hierarchical Data Format (HDF) as the common

data format of choice for standard product exchange and distribution. As

developed by the National Center for Supercomputer Applications (NCSA), the HDF

format is supported by a collection of software routines and applications needed

to work with data sets in HDF. This set of software, referred to as the HDF

library, is available in the public domain. To facilitate the exchange of data

and data products to be generated as part of the upcoming EOS missions, a sub-

library or library extension of HDF, called HDF-EOS has also been developed to

deal specifically with some types of satellite and field campaign data products

that will be routinely generated.

While there are many advantages to the use of HDF, a key to its' success as a

common data format and software library may be dependent upon expanding the

general user and science communities' awareness, knowledge, and comfort with HDF

and HDF-EOS. In particular, it is the individual investigators, academia

(students through researchers), the educational community (K-12 needs), and the

general public that many times do not have the required knowledge, nor the

resources to commit to obtaining this knowledge, to work with HDF files.

In response to this need, the NASA ESDIS project has funded the creation of this

on-line HDF tutorial geared towards HDF beginners. The purpose of this tutorial

is to provide the HDF non-expert, particularly potential future users of EOS

data, with the necessary information to enable one to successfully write data

sets into HDF and to also read data from an existing HDF file. This information

will include, but not be limited to, sections on the basics of HDF and HDF

files, the required software/hardware, the various ways of working with HDF

files, a review of HDF commands and operations, and a step by step instruction

on writing programs to work with HDF.

Some of the information presented here can also be found in further detail

throughout several of the excellent HDF reference guides and manuals (more on

this in Section 2 - An Introduction to HDF) written by NCSA. However, the goal

of this tutorial is to present, in a concise and easy to understand form, only

the information needed to help the HDF novice to read and write basic HDF files.

Furthermore, the HDF library has been designed to work with many different types

of data (arrays, images, etc.) and to carry out both simple and complex

operations on data sets. As a teaching tool, this tutorial will concentrate on

only one data type (scientific data arrays) and the simpler operations such as

reading, writing, and browsing entire data sets.

Another tutorial dealing with HDF and the HDF library has been developed by NCSA

(http://hdf.ncsa.uiuc.edu/tutslects.html). The current tutorial contains much

more of the basic information of HDF and is geared to the HDF beginner or

novice. Thoughthere are manyplaces of overlap between the two tutorials, they
seemto compliment each other in providing information for all types of HDF

users.

1.2 How to Use the Tutorial

In support of a contract to the NASA ESDIS project, this HDF tutorial has been

designed by Simpson Weather Associates, Inc. (SWA) with the goal of teaching the

novice HDF users, especially potential users of EOSDIS and future EOS data

products, how to use the HDF library to read and write HDF files. The tutorial

has been constructed in two parts. First is what we call the "Lecture" component

where we present what we think is the information necessary for a novice user to

learn what HDF is, what it can be used for, and how to apply it in practice.

Included in this "Lecture" material is a step-by-step outline detailing what the

user must do to successfully read or write an HDF file.

The second component of the tutorial is a question and answer section (what we

call the "Laboratory") which tests the user's knowledge of HDF, concentrating on

the information needed by the novice or average HDF user to work independently

with the HDF library to read and write HDF files.

We realize that the familiarity and knowledge level of the users of this

tutorial will span a wide range. As a result, we think it should be up to the

users to decide how they wish to learn and navigate through the tutorial.

However, we do advise that those with very little or no knowledge of HDF should

first preview and study the lecture material before testing themselves with the

Laboratory section.

1.3 Future Plans of the Tutorial

The current version of this HDF tutorial concentrates on the latest release of

the HDF library (HDF 4.1r3 as of July 1999) and how to use it for reading and

writing HDF files containing scientific data arrays. Future versions (ongoing

work) of the tutorial will be expanded to include additional operations

supported by the HDF library and how they can be used to work with various other

data types such as raster images, binary tables, and palettes.

While these modifications are being made, parallel work is being conducted on

tutorial components devoted to working with the point, swath and grid data sets

expected to be produced by EOS instruments, and supported by the HDF-EOS sub-

library.

In addition, a new experimental version of HDF, called HDF5, has been designed.

This new library was designed to address the main drawbacks of HDF4,

particularly the inability to deal with large data sets. Once HDF5 is officially

accepted, a tutorial(s) will be needed.

2. An Introduction to HDF

2.1 What is HDF?

HDF, which stands for Hierarchical Data Format, is a common data format that has

been developed to aid scientists and programmers in the storing, transfer and

distribution of data sets and products created on various machines and with

different software. HDF has been selected by the NASA ESDIS project as the

format of choice for the standard product distribution that will be part of the

Earth Observing System Data and Information System (EOSDIS).

In addition, HDF also refers to the collection of software, application

interfaces, and utilities that comprise the HDF library and allows users to work

with HDF files. The HDF library is discussed in detail in Section 3 - The HDF

Library: Software and Hardware.

2.2 Features of HDF

HDF is a multi-object file format for the sharing and storing of scientific

data. Some of the most important features of HDF are the following:

6)

7)

Self-describing: For each data object in an HDF file, there is also

information (or metadata) about the data type, size, dimensions and

location found within the file itself.

Extensibility: HDF is designed to accommodate future (new) data

types and data models.

Versatility: Currently, HDF supports six different data types and

provides software and applications to read and write these data

types in HDF.

Flexibility: HDF lets the user group, store, and read/write

different data types in the same file or in more than one file.

Portability: HDF software is mainly platform independent and can be

shared across most computer platforms (all platforms have not been

tested).

Standardization: HDF standardizes the formats and descriptions of

many types of commonly- used data types (i.e., arrays, images,

etc.).

HDF is available in the public domain.

2.3 What types of data does HDF support?

As of the latest release of HDF (HDF4.1 release 3 as of July 1999), the HDF

library supports the working with raster images, color or gray scale palettes,

multi-dimensional arrays, text strings, and statistical data (in the form of

tables). The HDF library supports the following data types:

I. Scientific Data sets -- Multi-dimensional integer or floating point

arrays

2. Vertex Data (Vdata and Vgroups) -- Multi-variate data stored as

records in a table

3. General Raster (Gr) -- Raster images

4. Annotation -- Text strings to describe files and parts of files
(metadata)

5. 8-bit Raster images
6. 24-bit Raster images
7. Palette -- 8-bit color palettes (accompanyimages)

In addition to these data types supported by the base HDFlibrary, a sub-library
called HDF-EOShas been developed to support various data types anticipated from
the Earth Observing System (EOS)satellite missions. The HDF-EOSdata models
include point data, satellite swath data, and gridded data.

As mentioned in the Welcomesection, this tutorial will concentrate on the
Scientific Data Model as a meansof teaching the essentials of HDF. More

information on the other data models can be obtained in the various documents

(particularly the HDF User's Guide) provided by NCSA through their anonymous ftp

server or World Wide Web home page.

2.4 Which version of HDF should I use?

The most current version or release of HDF is the best place to begin. As of

July 1999, the current version of the HDF library is HDF 4.1r3. An extension of

the HDF library, called HDF-EOS, is based on this version of HDF and is designed

specifically to work with data products anticipated from the upcoming EOS

satellite missions. The current tutorial will focus on the releases (i.e., rl,

r2 or r3) of HDF4.1. One feature of HDF4 that is important, especially to

experienced users of HDF, is the backward compatibility of HDF. That is,

HDF4.1r3 is compatible with earlier versions such as HDF4.1rl and the data sets

that were generated.

It should be noted that an experimental version of HDF, called HDF5, has also

recently been developed to address the shortcomings of HDF4. This new HDF

library includes simpler source codes, more consistent and fewer data models,

and the ability to work with large data sets (> 2GB). However, although plans

call for the HDF-EOS interface to be based on HDF5 at a later date, it is only

in the experimental/prototype stage. HDF5 and the associated software will not

be covered in this tutorial. The user is directed to NCSA's HDF5 Page

(http://hdf.ncsa,uiuc.edu/HDFS/) for detailed information.

2.5 Where can I get additional and detailed information on HDF?

The best sites or locations to find detailed information on all aspects of HDF

are the NCSA HDF Information Server available through the Internet

(http://hdf.ncsa.uiuc.edu/) and the NCSA anonymous ftp server

(ftp://ftp.ncsa.uiuc.edu/HDF/HDF/Documentation). Inquiries should be sent to

hdfhelp@ncsa.uiuc.edu.

The following documents and information can be obtained through the sources

mentioned above:

HDF 4.1 r3 Reference Manual

HDF 4.1 r3 Users Guide

HDF Specifications and Developers Guide v3.2 (mainly for the

programmers/developers)

HDF Newsletters

6

HDFFrequently Asked Questions (FAQ)
Java Products
Frequently Asked Questions about Java and HDF
Release Notes and ManPagesprovide information on items that are
not covered in the above documents
HDFsoftware contributions from non-NCSAusers

In addition, users maywish to join the hdfnews mailing list (by emailing
ncsalist@ncsa.uiuc.edu and placing subscribe hdfnews in the body of the message)
for discussions and updates on HDF.

3. The HDF Library: Software and Hardware

The HDF library is a collection of software routines that provides two types of

interfaces which allow the user to work with HDF files. A brief capsule

describing these interfaces is provided below:

Low-level Interface - The so-called low-level interface provides software that

enables the user to work with such file features as memory, error handling, and

storage. However, these features and the software are more of interest to the

experienced programmer and software developer not the HDF novice or beginner

interested in learning to read and write HDF files.

Information on the low-level interface can be found in the documentation listed

in Section 2 - Where can I get additional and detailed information on HDF?

Application Program_ng Interfaces (APIs)- Of more use to the average HDF user

are the high-level or Application Programming Interfaces (APIs). These APIs are

sets of routines that can be called in the user's FORTRAN or C program and which

will allow the user to access, read, and write HDF files. There are APIs

specifically created for each of the different data types supported by HDF,

which allow the user to work with HDF files.

Further detail is provided in Section 4 - Methods of Working with HDF Files.

In addition, the HDF library also provides a set of command-line utilities that

allow the user to work with HDF files outside of the interfaces and within the

command level (such as UNIX) of a terminal session. Outside of the HDF library,

there are also a large number of browsing and visualization software packages

(both free and commercial) that allow the user to look at all types of HDF

files. These two methods will be discussed later in the tutorial.

3.1 Obtaining and installing the HDF library

The HDF library and utilities are public domain software and are freely

available, along with documentation, from the NCSA anonymous ftp server. The

latest release of the HDF library can be downloaded from

ftp://ftp.ncsa.uiuc.edu/HDF/HDF/HDF Current. Associated documentation and

reference material describing the library and its' installation can be obtained

from ftp://ftp.ncsa.uiuc.edu/HDF/HDF/Documentation. The source code of the HDF

library and utilities are available with each "release" of HDF and can be

downloaded free of charge from this ftp site. The files are available in various

forms to support users of PCs, Macs, etc.

Unfortunately, the HDF library may not be accessed by every computer platform.

Following sections list the platforms and operating systems on which the latest

release of HDF has been tested.

NCSA provides a binary distribution for those platforms supported by HDF. For

platforms that are not specifically supported, the HDF source code is provided.

On UNIX, VMS,and WindowsNT/95, the binary distribution includes the pre-
compiled libraries, utilities, include files, manpages, and release notes. The
binary distribution on the Macintosh does not include the utilities.

The binaries are located in the following directories on the NCSAftp server
(ftp.ncsa.uiuc.edu):

/HDF/HDF Current/bin- Unix and VMS

/HDF/HDF_Current/zip- Windows NT/95

/HDF/HDF_Current/hqx- Macintosh

If you uncompressed the binaries for a supported platform, you would (in

general) find the following directories:

../bin - pre-compiled utilities

../include - include files

../lib - libraries

../man - man pages

../release notes - release notes

The compressed source code can be found on the ftp server in

/HDF/HDF Current/tar. An uncompressed version of the source code can be found in

/HDF/HDF_Current/unpacked.

To compile and install the HDF libraries from the source code, please read

through the READ and INSTALL files in the top directory of the source code. In

general, these are the steps you would take to compile and install HDF:

./configure -v

make >& comp.out

make test >& test.out
make install

3.2 Installing the HDF library

How do you install HDF on your computer system? Detailed directions for

configuring and installing the latest version of HDF can be found in the README

and INSTALL files located in the HDF Current unpacked subdirectory of the NCSA

anonymous ftp server (ftp://ftp.ncsa.uiuc.edu/HDF/HDF/HDF Current/unpacked).

In order to use the HDF library through C and FORTRAN programs, the user's

computer must have either a C or FORTRAN library linked with the HDF library.

For those users who wish to work with HDF using Java, Version 2.3 of the HDF

Java Products has been released as part of the latest release of the HDF

library. Included in these products is the Java HDF Interface (JHI) for the HDF

library. The JHI provides an interface to all the functions of the HDF library

and may be used by any Java application to work with HDF files.

The necessary Java source code must be downloaded from

ftp://ftp.ncsa.uiuc.edu/HDF/HDF/HDF Current/unpacked/java-hdf.

These are the only languages which can call HDFroutines (more detailed
information in "Programminglanguages supporting the HDFlibrary).

3.3 Computer platforms supporting the HDF library

The latest version of the HDF library is HDF 4.1 Release 3. Although the list of

machines supported by the HDF library increases with every incremental version

or release of HDF, it is still not possible to work with HDF files on every

single platform or operating system. As of the current release in July 1999, the

HDF library is currently supporting the following computer platforms and

operating systems:

Sun4 (Solaris 2.6, SunOS 4.1.4)

SGI-Indy (IRIX v6.5)

SGI-PowerChallenge

SGI-Origin (IRIX64 v6.5-64/n32)

HP9000/735 (HP-UX 9.03)

HP9000/755 (HP-UX B.10.20)

Exemplar (HP-UX A.10.01)

Cray T90 (CFP, IEEE)

Cray C90

IBM SP2 (v4.2.1)

DEC Alpha/Digital (Unix v4.0)

DEC Alpha/OpenVMS (AXP v6.2 and 7.1)

VAX Open/VMS (v6.2)

IBM PC-Intel Pentium (Solarisx86, Linux (elf), FreeBSD)

PowerPC (C only)

PCs with Windows NT/95

Windows NT/95

T3E (unicosmk 2.0.2.16)

As of July 1999 and the latest release of the HDF library (4.1r3), the only

platforms that support the Java HDF interface (JHI) are:

Sun4 (Solaris 2.5)

SGI-Indy (IRIX5.3)

IBM PC - Intel Pentium (Solarisx86 (2.5) and Linux (elf) 2.0.27)

Windows NT/95

Earlier versions or releases of the HDF library can still be used but may not be

compatible with the platforms listed above.

3.4 Programming languages supporting the HDF library

As of the current release of HDF (HDF 4.1r3), the only programming languages

which are supported by the HDF library are C and FORTRAN. Although the HDF

library code is only written in C, the library provides both a FORTRAN and Java

Interface which converts the code to C and allows the user to call the HDF

routines and applications inside FORTRAN programs and Java scripts. This

conversion will automatically take and requires no further action by the user.

Other then the obvious differences between the programming languages, the main

difference between using the different languages is the naming convention, or

names used for each HDF function. In addition, to use and compile HDF

application routines through C programs, an HDF header file (hdf.h) containing

10

standard HDF data type and file access code (i.e. read, write) definitions,

declarations and prototypes for the API routines must be called or included

(#include "hdf.h") at the beginning of the program. These header files are not

permitted in all FORTRAN versions and the needed information must be written

into the FORTRAN code (taken from the HDF library file "constants.f" within

"hdf. h").

One of the features of the HDF library is that it creates free format FORTRAN

include files during the "make" process on UNIX platforms. This allows FORTRAN

90 programs to use HDF include files. The FORTRAN 90 files are designated by the

".f90" file extension.

Another recent update to the HDF library is the inclusion of the Java HDF

Interface (JHI) as part of HDF version 4.1r3. The JHI provides an interface to

all HDF functions and must be obtained and installed in order to use Java to

work with HDF files. Please see "Obtaining and installing the HDF library" for

further details.

3.5 Compiling the HDF library

The following examples (for UNIX platforms) illustrate the general method of

compiling the HDF library and application programs:

C programs

cc -o <your program> ⁢your program>.c -I⁢path for hdf include

directory> -L⁢path for hdf libraries> -imfhdf -ldf -ljpeg -iz

FORTRAN programs

f77 -o ⁢your program> ⁢your program>.f -I&It;path for hdf include

directory> -L⁢path for hdf libraries> -imfhdf -ldf -ljpeg -iz

Specific examples for various platforms are provided below. If the platform you

use is not listed, the general instructions should be followed.

The latest platform related information can be found on the NCSA anonymous ftp

server at HDF4.1r3/release notes/compile.txt.

3.6 INSTRUCTIONS FOR SPECIFIC PLATFORMS

3.6.1 Cray C90 or YMP:

C:

cc -O -s -o ⁢your program> ⁢your program>.c -I⁢path for hdf

include directory> -L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz

FORTRAN:

cf77 -O 1 -s -o ⁢your program> &It;your program>.f -I&It;path for hdf

include directory> -L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz

3.6.2 Dec Alpha/Digital Unix:

I!

C:

cc -Olimit 2048 -stdl -o ⁢your program> ⁢your program>.c -I⁢path

for hdf include directory> -L⁢path for hdf libraries> -imfhdf -idf -

ljpeg -iz

FOR TRAN:

f77 -o ⁢your program> <your program>.f -I⁢path for hdf include

directory> -L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz

3.6.3

TO compile your programs, prog.c and progl.for, with the HDF library, mfhdf.olb,

df.olb, and libz.olb are required. The libjpeg.olb library is optional.

cc/opt/nodebug/define=(HDF, VMS)/nolist/include=⁢dir for include> prog.c

fort progl.for

link/nodebug/notraceback/exec=prog.exe prog.obj, progl.obj, -⁢dir for

lib>mfhdf/lib -⁢dir for lib>df/lib, ⁢dir for

lib>libjpeg/lib, -⁢dir for lib>libz/lib, sys$1ibrary:vaxcrtl/lib

NOTE: The order of the libraries is important: mfhdf.olb first, followed by

df.olb then libjpeg.olb and libz.olb.

3.6.4 Exemplar:

C:

cc -ext -nv -no ⁢your program> ⁢your program>.c -I⁢path for hdf

include directory> -L⁢path for hdf libraries> -imfhdf -Idf -ljpeg -iz

FORTRAN:

fc -sfc -72 -o ⁢your program> ⁢your program>.f -I⁢path for hdf

include directory> -L⁢path for hdf libraries> -imfhdf -idf -ljpeg -Iz

3.6.5 FreeBSD:

C:

gcc -ansi -Wall -Wpointer-arith -Wcast-qual -Wcast-align -Wwrite-strings -

Wmissing-prototypes -Wnested-externs -pedantic -02 -o ⁢your program>

⁢your program>.c -I⁢path for hdf include directory> -L⁢path for

hdf libraries> -lmfhdf -idf -ljpeg -iz

FORTRAN:

f77 -0 -o <your program> ⁢your program>.f -I<path for hdf include

12

directory> -L⁢path for hdf libraries> -imfhdf -ldf -ljpeg -iz

3.6.7 HP - UX:

C:

cc -Ae -0 -o ⁢your program> ⁢your program>. -I⁢path for hdf

include directory> -L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz

FORTRAN:

f77 -0 -o ⁢your program> ⁢your program>.f -I⁢path for hdf include

directory> -L⁢path for hdf libraries> -imfhdf -idf -ljpeg -lz

3.6.8 IRIX 5.3:

C:

cc -ansi -0 -s -o ⁢your program> ⁢your program>.c -I⁢path for hdf

include directory> -L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz

FORTRAN:

f77 -O -s -o ⁢your program> &It;your program>.f -I⁢path for hdf

include directory> -L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz

3.6.9 IRIX 6.x with 64-bit mode:

C:

cc -ansi -64 -mips4 -0 -s -o ⁢your program> ⁢your program>.c -

I⁢path for hdf include directory> -L⁢path for hdf libraries> -imfhdf

-ldf -ljpeg -iz

FOR TRAN

f77 -64 -mips4 -0 -s -o ⁢your program> ⁢your program>.f -I&It;path

for hdf include directory>\ -L⁢path for hdf libraries> -imfhdf -idf -

ljpeg -lz

3.6.10 IRIX 6.x with n32-bit mode:

C"

cc -ansi -n32 -mips3 -0 -s -o <your program> <your program>.c -

I⁢path for hdf include directory> -L⁢path for hdf libraries> -imfhdf

-idf -ljpeg -iz

FOR TRAN :

f77 -n32 -mips3 -0 -s -o <your program> <your program>.f -I<path

for hdf include directory> -L⁢path for hdf libraries> -imfhdf -idf -

ljpeg -iz

13

3.6.11 Linux A.OUT And ELF:

C:

gcc -ansi -o ⁢your program> ⁢your program>.c -I⁢path for hdf

include directory> -L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz

FORTRAN (a.out only):

f77 -o ⁢your program> ⁢your program>.f -I<path for hdf include

directory> -L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz

3.6.12 Solaris:

The -insl is necessary in order to include the xdr library.

C:

cc -Xc -x02 -o <your program> ⁢your program>.c -I⁢path for hdf

include directory> -L⁢path for hdf libraries> -imfhdf -idf -ljpeg -lz -

L/usr/lib -insl

FOR TRAN:

f77 -0 -o <your program> ⁢your program>.f -I⁢path for hdf include

directory>-L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz -L/usr/lib

-insl

3.6.13 Solaris x86 (C only):

The -insl is necessary in order to include the xdr library.

gcc -ansi -0 -o ⁢your program> ⁢your program>.c -I⁢path for hdf

include directory> -L⁢path for hdf libraries> -imfhdf -Idf -ljpeg -iz -

L/usr/lib -insl

3.6.14 SP2 (AIX):

C:

xlc -qlanglvl=ansi -0 -o ⁢your program> ⁢your program>.c -I⁢path

for hdf include directory> -L⁢path for hdf libraries> -imfhdf -idf -

ljpeg -iz

FORTRAN:

f77 -0 -o ⁢your program> ⁢your program>.f -I⁢path for hdf include

directory> -L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz

3.6.15 SunOS:

14

C:

gcc -ansi -o ⁢your program> ⁢your program>.c -I&It;path for hdf

include directory> -L<path for hdf libraries> -imfhdf -idf -ljpeg -iz

FORTRAN:

f77 -f -o ⁢your program> ⁢your program>.f -I⁢path for hdf include

directory>-L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz

3.6.16 t3d:

C (only):

cc -Tcray-t3d -Xl -o ⁢your program> ⁢your program>.c -I⁢path for

hdf include directory> -L⁢path for hdf libraries> -imfhdf -idf -ljpeg -

iz

3.6.17 VAX OpenVMS:

To compile your programs, prog.c and progl.for, with the HDF library, mfhdf.olb,

df.olb, and libz.olb are required. The libjpeg.olb library is optional.

cc/DECC/STANDARD=VAXC/opt/nodebug/define=(HDF, VMS)/nolist/include=-&It;dir for

include> prog.c

fort progl.for

link/nodebug/notraceback/exec=prog.exe prog.obj, progl.obj, -⁢dir for

lib>mfhdf/lib -⁢dir for lib>df/lib, ⁢dir for lib>libjpeg/lib, -

⁢dir for lib>libz/lib, sys$1ibrary:deccrtl/lib

NOTE: The order of the libraries is important: mfhdf.olb first, followed by

df.olb then libjpeg.olb and libz.olb.

3.6.18 Windows NT / 95:

Using Microsoft Visual C++ version 4.x:

Under Tools->Options, select the folder, Directories:

Under "Show directories for", select "Include files"

Add the following directories:

C:\MSDEV\INCLUDE

C:\MSDEV\MFC\INCLUDE

C:⁢path to HDF includes>\INCLUDE

Under "Show directories for", select "Library files":

Add the following directories:

15

C:\MSDEV\LIB
C:\MSDEV\MFC\LIB
C:⁢path to HDFlibs>\LIB

Under Build->Settings, select folder, Link:

Add the following libraries to the beginning of the list of Object/Library
Modules

libsrc.lib src.lib jpeg.lib zlib.lib xdr.lib getopt.lib

The following libraries may (or may not) need to be included

kerne132.1ib user32.1ib gdi32.1ib winspool.lib comdig32.1ib advapi321ib
shel132.1ib ole32.1ib oleaut32.1ib uuid.lib odbc32.1ib odbccp32.1ib

Under Build->Settings, select folder C/C++:
For the Preprocessor Definitions add: INTEL86

The following were already there: WIN32,_CONSOLE

16

4. Methods of Working with HDF Files

There are four basic ways or methods of working with (including reading and

writing) HDF files. These include two levels of programming interfaces within

the HDF library, a set of command line utilities also contained in the HDF

library, and a wide range of browsing and visualization software provided by

both commercial vendors and non-profit organizations (NCSA, for example).

Further detail on each method is given below:

Low-level interface

High-level interface (APIs)

Command line utilities

HDF browsing and visualization tools

Both the command line utilities and the browsing and visualization tools provide

easy-to-use methods for HDF non-experts to work with HDF files. As shown below,

the use of the command line utilities is rather straightforward. However,

neither the command line utilities nor tools provide the user with the

flexibility and means of working with the HDF files in such an encompassing

fashion as permitted in the High-level APIs. For this reason, as well as the

fact that information and directions regarding the use of the HDF tools are

better provided by the Internet sites indicated in section 4.4, the following

sections of the tutorial will mainly concentrate on using the APIs to work with

HDF files

4.1 Low-level interface

The low-level interface is mainly reserved for expert HDF programmers and

software developers who are interested in not only reading and writing HDF

files, but also such features as error handling, memory management, and storage.

A lot of the features in this interface are unnecessary for the novice HDF user.

Another drawback is that routines/operation callable through this interface are

only available in C and not FORTRAN.

4.2 High-level interface (APIs)

In this interface, Application Programming Interfaces (APIs) are specifically

tailored for each type of data (Images, Scientific Data arrays, etc.) supported

by the HDF library. These APIs are callable routines that will allow the user to

access, read and write HDF files specifically for the type of data they are

interested in. Although it is necessary for the call of these APIs and

associated routines to occur in either a C or FORTRAN program, the programming

is usually limited to a set of call statements that access, open, operate (read,

write, etc.), and terminate. All of the rest is taken care of by the interface

itself. With its' availability in both C and FORTRAN, the minimal amount of

programming necessary, and the independent APIs and routines for each data type,

the High-level interface provides a relatively simple way for the average

programmer and novice HDF users to work with HDF files.

4.2.1 Available APIs:

Through the High-level interface, the HDF library provides APIs and associated

routines for all the data types supported by HDF. This includes 8- and 24-bit

raster images, palettes, scientific data arrays, metadata (Annotation),

17

multivariate data stored as tables (Vdatas), and EOS Scientific Data (point,

swath, and grid APIs contained in the HDF-EOS sub-library). In addition, there

are separate APIs and routines for multi-file data sets of the various types.

Each API is independent of the others and is identified by a certain prefix

(different for both the FORTRAN and C program version) which is assigned to all

the function calls employed by the user in his/her program for that specific

data type.

The following is a list and short description of the various APIs with the C and

FORTRAN prefaces for each interface given in parenthesis:

4.2.1.1MULTIFILEAPIs

SD API (SD/sf): For scientific data sets (multi-dimensional arrays together with

a record of dimension and number type). The SD API is used to store, manage and

retrieve multi-dimensional arrays (integer or floating point decimal), including

their dimensions and attributes in more than one file.

GR API (GR/mg): The GR API is used to store, manage and retrieve general raster

image data sets, including their dimensions and palettes. However, unlike the

DF24 and DF8 APIs, this information can be in more than one file. In addition,

the GR API can also manage unattached palettes.

VS API (VS/vsf): The VS API is used for reading and writing customized tables

which are stored in fixed length fields (Vdata).

V API (V/vf): The V API is used to create, group, and manipulate primary HDF

objects in a file (Vgroup).

VSQ API (VSQ/vsq): The VSQ API is used for querying or obtaining information on

vdatas. This includes the number of records, names, and number types.

VF API (VF/not available): The VF API can be used for obtaining information on

the fields in an existing vdata.

AN API (AN/af): The AN API is used to store, manage, and retrieve text strings

used as metadata to describe the data file itself or any of the data elements
inside the file.

4.2.1.2 SINGLE FILE APIs

DFSD API (DFSD/ds): The DFSD API is similar to the SD API, but only operates on

one single file.

DFR8 API (DFR8/d8): The DFR8 API is used to store, manage and retrieve 8-bit

raster images, along with their dimensions and color palettes. This information

is all included in one file.

DF24 API (DF24/d24): The DF24 API is used to store, manage and retrieve 24-bit

raster images, including the dimensions of the image. This information is also
included in one file.

DFP API (DFP/dp): The DFP API is used to store and retrieve 8 bit palettes in
one file.

18

DFANAPI (DFAN/da): The DFANAPI is used for reading and writing text string
(metadata) assigned to HDFfiles or objects.

4.2.1.3 RI)F-EOSAPIs

PT API (PT/pt): The PT API is used for storing, retrieving, and manipulating

data in point data sets. These data have associated geolocation information, but

are not organized in a spatial or temporal fashion. The PT API is part of the

HDF-EOS sub-library.

GD API (GD/gd): The GD API is used for storing, retrieving, and manipulating

data that has been stored in a rectilinear array based on a defined map

projection. The GD API is part of the HDF-EOS sub-library.

SW API (SW/sw): The SW API is used for storing, retrieving, and manipulating

time-ordered data sets such as satellite swath data. The SW API is part of the

HDF-EOS sub-library

Rather then providing material on all of the high-level interface APIs, we have

chosen in this tutorial to use the Multi-dimensional array, multi-file interface

(SD API) as an example to teach the novice how to use HDF. For detailed

information on the other APIs, all of which are used in similar fashion to the

SD API, the reader of the tutorial is directed to the documentation identified

in Section 2 - Where can I get additional and detailed information on HDF?

4.3 Command line utilities

One method of working with HDF files is through command line utilities during a

UNIX terminal session. Command line utilities allow the user to call up HDF

application programs outside of formal C and FORTRAN programs.

4.3.1 List and description of command line utilities

The following is a list of command-line utilities available in the HDF

library:

hdp - displays contents and data objects within an HDF file

hdf24to8 - converts 24-bit raster images to HDF 8-bit images

hdf8t025 - converts 8-bit raster images to HDF 24-bit images

hdfcomp - re-compresses an 8-bit raster HDF file

hdfls - lists basic information about an HDF file

hdfpack - compacts an HDF file

hdfunpac - unpacks an HDF file

8) hdftopal - extracts a palette from an HDF file

9) hdftor8 - extracts 8-bit raster images and palettes from an HDF file

I0

ii

12

13

14

15

16

17

18

hdfed - HDF file editor

paltohdf - converts a raw palette to HDF

r8tohdf - converts 8-bit raster image to HDF

ristosds - converts a series of raster image HDF files into an HDF file

vshow - dumps out vsets from an HDF file

jpeg2hdf - converts jpeg images to HDF raster images

hdf2jpeg - converts HDF raster images to jpeg images

hdfrseq - play an animation sequence through NCSA/BYU telnet

vmake - create Vset structures from ASCII text

19

The hdp commandline utility is a very helpful operator, especially for the
average HDFuser. HDPcan list the contents of HDFfiles at various levels and
with different details. It can also dumpthe data of one or more specific
objects in the file.

Although the commandline utilities permit the user to perform commonoperations
on HDFusing a simple one-line command,the main drawback to this method is the
limited numberof operations supported.

4.4 HDF browsing and visualization tools

A complete and current listing of the browsing and visualization tools that can

work with HDF files is provided by NCSA on their HDF home page

(http://hdf.ncsa.uiuc.edu/tools.html). There are both publicly available (free)

and commercial software packages that can be used to work with HDF files. A

summary of some of the more useful and commonly used software, including the

address of the Internet site/home page where the software may be accessed, is

provided below:

4.4.1 Publicly Available Software

Freely available software for viewing and browsing HDF files have been developed

by both NCSA and various other institutes, science or data centers, and

businesses. We have broken these tools down into three categories:

4.4.1.1 Current NCSA Tools

The following are the most current and commonly used tools developed by NCSA for

viewing and browsing all types of HDF files:

i. The NCSA Java-based HDF Viewer (JHV)(http://hdf=ncsa. uiuc.edu/javachJf _-

html/jhv/) - Java based tool that allows the user to view the contents of

an HDF file.

2. The HDF WWW Scientific Data Browser (http://hdf.ncsa.uiuc.edu/sdb/sdb.html)

- an interface program that reads HDF files by accessing the HDF library and

can visualize or format the data (in HTML) on the web.

3. The Java HDF Server (JHS) (http://hdf.ncsa.uiuc.edu/java-hdf-html/jhs/) -

The java based program that calls the HDF library through the Java

interface and can access remote HDF files.

4.4.1.2 Older NCSA Tools (not updated to run with latest version of HDF)

Although not updated to run with the current release of HDF (HDF 4.1r3), the

following tools may still be used to work with HDF files. All of these tools are

available from the NCSA anonymous ftp server

(ftp://ftp.ncsa.uiuc.edu/Visualization/)

I) NCSA Collage - Collaborative visualization program

2) NCSA Mosaic -Browsing on UNIX

3) NCSA Polyview - Visualization and analysis of HDF files

4) NCSA Reformat - Converts HDF files

5) NCSA X DataSlice - Manipulates 3-D images

6) NCSA X Image

2O

4.4.1.3 Non-NCSA Tools

The following tools have been developed independently from NCSA, but are still

available in the public domain:

i) The Data and Dimensions Interface (DDI) (http://www-

pcmdi.llnl.gov/williams/ddi/ddi.html) - Can extract, read, write and

visualize large data sets in HDF format.

2) Envision (http://www.atmos.uiuc.edu/envision/envision.html) -

Interactive system that provides for the management and visualization of

large data sets in HDF format.

3) HDF Browser (http://www.fortner.com/docs/product hdf b.html)- Created

by Fortner Research to provide point-and-click access to data stored in

HDF. This includes viewing the data stored in arrays, images, etc. and

editing HDF files.

4) hdfv (http://www.biueneptune.com/-yotam/hdfv.html)- An HDF read-only

interface that is an HDF viewer with a GUI. Only supports vgroup/Vdata

data types.

5) LinkWinds (http://linkwinds.jpl.nasa.gov) - A visual data analysis and

exploration system designed to rapidly and interactively investigate large

multivariate data sets (including HDF and HDF-EOS format).

6) SHARP (http://cimss.ssec.wisc.edu/--gumley/sharp/sharp.html)- A viewer

for MODIS Airborne Simulator (MAS) HDF data.

7) ScaiAN (http://www. scri.fsu.edu/~lyons/scian)- Scientific visualization

and animation package.

8) VCS (http://ww_wipcmdi-llnl.gsvisoftware/)- Facilitates the selection,

manipulation and display of scientific data and supports the HDF format

for both reading and writing.

9) EOSView (http://edhs].gsfc.nasa.gov/waisdata/toc/tp4450601toc.htm]) -

An HDF file verification tool that allows the display of most HDF and HDF-

EOS data types.

I0) The Data and Information Access Link (DIAL) (http://dial.gsfc.nasa.gov/)-

A server which provides tools for the searching, browsing, and visualizing

of HDF and HDF-EOS files through the WWW.

Ii) HDFLook (http://loasys.univ-lillel.fr/Hdflook/hdflook gb.html) - A

viewer used to access and view HDF and HDF-EOS files, particularly raster

images and scientific data sets.

12) IRI/LDEO (http://ingrid.ldgo.columbia.edu/) - A climate data library

that helps in the writing of HDF files and the management of data sets.

13) Webwinds (http!//webwinds:jpl.nasa.gov/) - A platform independent

system written in java that acts as an interactive visualization tool for

data in HDF and HDF-EOS format.

21

14) view hdf (http://eosweb.larc.nasa.gov/HPDOCS/view hdf.html) - A

visualization tool developed by NASA LARC that provides for the viewing,

plotting, and manipulation of HDF datasets

4.4.2 Commercial Software

Below is a partial list of some of the more powerful and more commonly used

software packages for working with HDF files:

I)AVS5/AVSExpress (http://www.avs.com/products/index.htm) - Can read and

write files in HDF format. Also includes a suite of data visualization and

analysis techniques/tools (3-D visualization, plots, etc.).

2)Data Explorer (http://www. research.ibm.com/dx)- General-purpose software

package for data visualization and analysis. The data may be imported from

HDF format.

3) IDL (http://www.rsinc.com/idl/index.cfm) - software package for the

analysis and visualization of data. Includes advanced image processing,

interactive 2-d and 3-D graphics, and flexible date input/output.

4) Noesys (http://www. fortner.com/noesys)- A desktop software program

specifically designed to easily access, view, analyze and archive data in

the HDF format.

5) Plot (http://www.fortner.com/docs/product plqt:_html)- A package that

can read, analyze and plot HDF data sets of column data using Windows,

Macintosh and UNIX.

6) HDF Explorer (http://www.mind.pt/hdf.explorer) - A visualization

program that reads and views data sets in HDF format.

4.4.3 Contributed Software

In addition to the above-mentioned software, also available from the NCSA

anonymous ftp server is a collection of software routines and utilities

developed by HDF users who wish to share their knowledge and work with the HDF

community. This software can be found in the directory pub/hdf/contrib/ of the

anonymous ftp server (ftp://ftp.ncsa.uiuc.edu/HDF/HDF/contrib/). Most of these

"contributed" routines were developed with specific platforms and operating

systems in mind. Below are a few examples:

I) readDF - reads HDF files into IRIS Explorer

2) fits2hdf - converts FITS files (another format) into HDF

3) iristohdf - converts SGI image format to HDF format

4) hdfxdis - directly displays HDF image on an X-server

These routines together with the name and address of the developer are free and

publicly available to all interested users of HDF

22

5. SD API

The SD (Scientific Data) API is a collection of callable (from C or FORTRAN

programs) routines which will allow the user to, among other operations, create,

write, and read HDF files containing multi-dimensional arrays of scientific

data. In subsequent sections, we will show how the SD API can be used for

reading and writing HDF data sets. For a complete listing of all the operations

permitted in the SD API, please see the HDF 4.1r3 User's Guide

(ftp://ftp.ncsa.uiuc.edu/HDF/HDF/Documentation/HDF4.1r3) As will be demonstrated

shortly, FORTRAN and C routines in the SD API begin, respectively, with the

prefix "sf" or "SD". Data within a scientific data set may be of the floating

real or integer type. In HDF, and in the SD API, a scientific data set (or SDS)

must consist of a multi-dimensional array (called a SDS array), together with

information on data type and dimension record. The SD API allows the user to

work simultaneously with more than one multi-dimensional scientific data set

(SDS) while the DFSD API is restricted to one multi-dimensional array.

5.1SDS Array

The SDS array is the actual data itself, an n-dimensional array which contains

the floating point or integer values. Each SDS array has an SDS name (series of

alphanumeric characters) that can either be assigned by the calling statement

with the FORTRAN or C program or automatically assigned by the HDF library when

the new data set (if writing) is created.

5.2 Data Type

The SD API supports the following data types:

i) 32-bit floating point

2) 16-bit floating point

3) 8-bit signed integers

4) 16-bit signed integers

5) 32-bit signed integers

6) 8-bit unsigned integers

7) 16-bit unsigned integers

8) 32-bit unsigned integers

9) Variable bit integers and floating point decimal values

As described later, the data type is defined in the accessing/creating function

call statements within the C and FORTRAN programs.

5.3 Dimensions

The dimensions of a SDS array identify the shape and size of the array in

question. This includes the rank of the dimensions, which in HDF speak refers to

the number of dimensions. One innovative feature of HDF is that one, and only

one, dimension of a SDS array may be of unlimited size and referred to as an

unlimited dimension.

5.4 Optional information

23

When writing or creating an HDF file, the user may also wish to include

information regarding the data set or array. This must be done in the calling

functions of the C or FORTRAN programs.

Attributes, either predefined by NCSA or user-defined, are text strings which

provide metadata about the file, data set, or dimension of interest. This

includes information on what is in the file or individual SDS arrays, and how

the maker of the file/data intends for the data to be used or viewed. Like most

of the other routines mentioned above, attributes are defined in the function

calls of the program. Attributes are further covered in section 6.

24

6. Attributes and Metadata

The HDF library allows for several ways for the user to provide metadata (data

about data) information for the HDF file or data set to be written or read. This

information is not a requirement for HDF files. The most commonly used method or

routine within the HDF library for providing metadata are "Attributes" or text-

strings which describe the HDF file, data set (SDS array) or dimensions. There

are two types of attributes used in HDF that can be defined in the user's

calling program:

User-defined attributes

Predefined attributes

Both the predefined and user-defined attributes may be accessed using the

general attribute routines for user-defined attributes provided by the HDF

library. On the other hand, the predefined attributes may only be accessed using

the routines specifically tailored for the predefined attributes (see above). As

a result, in later sections, we will focus on using the general attribute

routines developed for user-defined attributes

6.1 User-defined attributes

User-defined attributes are optional information that can be given and attached

to HDF files, scientific data sets, and dimensions. They are referred to,

respectively, as file attributes, array attributes, and dimension attributes.

These attributes are at the discretion of, and to be defined by, the user.

The SD interface uses the same functions to access all of the three types of

attributes, with the difference being the use and definition of the different

identifiers (i.e., file ids for file attributes, SDS ids for array attributes,

and dimension ids for dimension attributes). After the proper identifier is

obtained, the user can then create and define his attribute (labels, formats,

coordinate system, etc.)

More on user-defined attributes and how to define them is provided in Section 7:

Writing an HDF File.

6.2 Predefined attributes

Predefined attributes are attributes that use previously defined or reserved

labels and data types. While the user-defined attributes must be defined by the

user, the predefined attributes need not be defined and are already understood

by the HDF library. However, predefined attributes can only be assigned to

scientific data sets (SDS) and dimensions (not files, like is possible with

user-defined attributes).

There are seven main predefined attributes:

For labels: long_name
For units: units

For formats: format

For coordinate systems: cordsys

For Value ranges: valid_range
For Fill values: FillValue

25

7) For Calibration: scale factor

scale factor err

add offset

add offset err

calibrated-nt

The predefined attributes can be accessed by the SD interface in the same

general fashion as the user-defined attributes or by using routines developed

specifically for the predefined attributes. Thegeneralattribute routines

are recommended in most cases.

26

7. Writing an HDF File

The following sections detail how a user may utilize the HDF library and various

APIs within a computer program to write a data file in HDF. As a teaching tool,

this tutorial will concentrate on using the FORTRAN programming language and the

SD API. However, examples of the appropriate C code will also be given for

certain steps.

Does the current version of HDF support your computer platform?

Downloading and installing of the HDF library

Are all libraries and programs properly linked and compiled

Writing a short program to write data in HDF

7.1 Does the current version of HDF support your computer platform?

As outlined in Section 3, the HDF library can not be run on just any available

computer platform or operating system. Before downloading the HDF library

software, the user should make sure that the current release of HDF supports

his/her computer and operating system. Otherwise, the user will be unable to

work with the HDF library and files. There is also a possibility that previous

releases of HDF may support the Users computer platform while the latest version

does not. In this event, the user may wish to obtain the earlier software.

7.2 Downloading end Installing of the HDF library

The HDF library and software is public domain software and available free to all

users. The library and code can be downloaded from the NCSA anonymous ftp server

(ftp://ftp.ncsa.uiuc.edu/HDF/HDF/HDF4.1r3). Directions on how to install the HDF

library can also be found at this location.

7.3 Are all libraries end programs properly linked and compiled?

In order to run the HDF software, the library and the needed application

routines and programs must first be properly compiled and linked. As of the

current release of HDF (4.1r3), four separate libraries must be compiled and

linked. These are the libmfhdf.a, libdf.a, libjpeg.a, and libz.a libraries.

Provided below are examples of the command(s) that can be used for this action.

It must be noted that the order in which the libraries are linked is important

and should not vary from the order shown below:

For C programs:

cc -o ⁢your program> ⁢your program>.c \

-I⁢pathf for hdf include directory> \

-L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz

For FORTRAN programs:

f77 -o ⁢your program> ⁢your program>.f \

-I⁢path for hdf include directory> \

-L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz

For the various commands needed to link and compile the HDF library on each

individual platform, please see Section 3 - Compiling the HDF library.

27

7.4 Writing a short program to write data in HDF

The following steps (some which are rather simple and common sense) should be

addressed by the user before, during or after the creation of the calling

program to be used. Each step will be discussed in further detail in the

sections that follow.

1

2

3

4

5

6

7

8

9

i0

Select a programming language

Make sure all include files are in place

Make all variable and parameter declarations

Open file containing existing non-HDF data set and store in array

Initialize access to the SD interface and open new HDF file

Define characteristics of new HDF data set(s)

Write existing data set/array to a new data array in a new HDF file

Optional operation: Provide metadata for HDF files or data sets

Terminate / close access to all files, data sets, and APIs

Execute program

7.4.1 Select a programming language

As mentioned previously, the HDF library and programs can only be run by using

either the C or FORTRAN programming language. This choice is up to the user

depending on availability and the language he or she feels most familiar and

comfortable with. All SD API routines which allow the user to work with

scientific data sets (SDS) either have the "sf" prefix (FORTRAN) or the "SD"

prefix (C). Examples of the routines used to open, create, read, and write SDS

are given in the following sections.

7.4.2 Make sure all include files are in place

In section 3 - The HDF Library: Software and Hardware, it was noted that a

series of standard HDF definitions and declarations of file access codes (i.e.

read, write, etc.) and data types (i.e. integer, character) must be included

within the user's programs. In the C programs, this is accomplished simply by

adding the line #include "hdf.h" at the beginning of the program. This line

effectively includes all the needed constants and definitions from the HDF

software. When writing FORTRAN programs, this may also be done by simply adding

an include statement that brings in only the needed definitions and declarations

(constants.f) from the hdf.h header file. This is done by the following code:

"include constants.f". However, all FORTRAN compilers (particularly the older

ones) do not support the use of include statements. In this event, the user must

type in/declare all the constants and definitions found in the constants.f file.

It is advised that all declarations, whether through include statements or not,

should be done at the beginning of the program.

Example:

FOR TRAN:

C DFACC RDONLY is defined in hdf.h

C if not available for FORTRAN then add

Parameter (DFACC_RDONLY=I

C:

#include "hdf.h"

28

main() {
.o.}

7.4.3 Make all variable and parameter declarations

As with any program, the scientist/user should declare and initialize all

variables and parameters at the beginning of the program. This includes all

variables and arguments that will be used by the HDF commands to follow. The

variable and parameter declarations needed for each call will be provided in the

example boxes of the individual steps. These statements always belong at the top

of the program.

7.4.4 Open file containing existing non-HDF data set and store in array

Before writing any data into HDF, the actual data first has to be accessed

within the program. As is normally done in non-HDF applications, the file

containing the data that the user wishes to convert into HDF must first be

opened. After opening the file, the user reads and stores the data into a multi-

dimensional array that can be accessed by the HDF commands.

For the purpose of this tutorial, the non-HDF data set will be read from an

existing file called wind.dat into a multi-dimensional real array called rwind

(XL, YL) where XL= 30 and YL = 30.

Example:

C:

main() {

FILE *infile;

const int

XL = 30

YL = 30;

int i, j;

float rwind[XL] [YL];

infile = fopen("wind.dat", "r") ;

for(i=0; i⁢XL; i++)

for(j=0; j&It;XL; j++)

fscanf(infile, "%f", rwind[i] [j]) ;

}

FORTRAN:

real rwind(30,30)

XL = 30

YL = 30

Open(unit=15, file='wind.dat',form='formatted ')

Do I=l, XL

Do j=l, YL

Read (15,25) rwind (I, J)

Enddo

Enddo

29

7.4.5 Initialize access to the SD interface and open new HDF file

The first real HDF programming step actually accomplishes 2 things:

i) Creates and opens a new HDF file

2) Initializes and opens the SD interface.

This is done by the following command:

sd id = sfstart(filename, access mode) (FORTRAN)

or

sd id = SDstart(filename, access mode); (C)

where;

sd id = HDF file id returned by the sfstart/SDstart command

fi[ename = the name of the new HDF file (character string)

access mode = Type of access required for this file

All available options for the access-mode argument are defined in the hdf.h

header file mentioned previously and need only to be identified for all C and

most FORTRAN operations. All options begin with the prefix "DFACC " and include:

DFACC CREATE (File Creation Access)

DFACC RDONLY (Read Access)

DFACC RDWR (Read and Write Access)

As mentioned previously, these definitions are stated in the hdf.h header file.

In the event that the user's FORTRAN compiler can not handle include statements

such as those found in the hdf.h header file, the DFACC variable must be

defined, along with its assigned value, at the beginning of the program. This is

done by a line of code such as:

parameter (DFACC RDONLY : I) (For FORTRAN only)

For the purpose of this tutorial, the new HDF file will be called wind.hdf.

Example:

FOR TRAN:

integer*4 sd id

integer sfstart

parameter (DFACC CREATE = 4)

sd id = sfstart(wind.hdf, DFACC CREATE)

C:

#include "hdf.h"

/* Includes all the access mode definintions */

int32 sd id;

3O

sd id = SDstart(wind.hdf, DFACC CREATE);

7.4.6 Define characteristics of new HDF data set(s)

After initializing the SD interface and opening and assigning a file id (sd_id)

to the HDF file to be used, the next step is to define a new HDF Scientific Data

Set (SDS) to which the existing non-HDF data will be written. This is done by

the following command:

sds_id = sfcreate (sd_id, name, number_type, rank, dim_sizes) (FORTRAN)

or

sds_id = SDcreate (sd_id, name, number_type, rank, dim_sizes); (C)

It should be noted that sfselect/SDselect may also be used to write to a

previously defined HDF data set.

Where

sds id = HDF SDS array id returned by the sfcreate/SDcreate command

sd id = the new HDF file id created in the previous step (sfstart/SDstart)

name = name of new SDS (in ASCII character string)

number_type = data type of data set

This argument always takes the form of DFNT_X, where X is the data type to be

used. A list of all the data types supported by the API can be found in the HDF

User's Guide. For most of the data types, 8,16,32 and 64-bit types are

supported. A few of the available options are provided below:

DFNT FLOAT for Floating Point Reals

DFNT DOUBLE for Double Precision Reals

DFNT CHAR for Character

DFNT INTI6 for 16-bit Integer Type

DFNT UINTI6 for 16-bit Unsigned Integer Type

DFNT INT32 for 32-bit Integer Type

DFNT--UINT32 for 32-bit Unsigned Integer Type

Similar to the DFACC argument, all data types are defined in hdf.h. Once again,

for FORTRAN compilers unable to access these include files, the DFNT_ argument,

and its' assigned value, must be defined at the beginning of the program using

code like this:

parameter (DFNT INTI6 = 22) (taken from constants.f within the hdf.h file)

rank = number of dimensions in array to be written (integer)

This value is best specified at the beginning of the program along with the

other various declarations. This can be done with a simple line of code:

rank = 2, 3,

dim sizes = An array defining the size of each dimension of the data array

(integer)

3!

As with the "rank" argument, this variable is best specified with the other

variable declarations at the top of the program. In FORTRAN, an example for a 2-

D, 30 X 30 array would be:

dimsizes(1) = 30

dimsizes (2) = 30

or

dimsizes[O] = 30;

dimsizes[l] = 30;

(FORTRAN)

(C)

EXAMPLE: For an existing data set to be written as a 2-D array of 30 (x

direction) by 30(y direction), and as an 8-bit integer type, the following

commands need to be used:

rank = 2 (FORTRAN)

dimsizes(1) = 30

dimsizes(2) = 30

sds id = sfcreate(sd id, newarray i, DFNT INT8, rank, dimsizes)

or

rank = 2; (C)

dimsizes[0] = 30;

dimsizes[l] = 30;

sds_id = SDcreate(sd_id, "newarray_l", DFNT_INT8, rank, dimsizes);

Example:

FORTRAN:

integer*4 DFNT INTI6

integer sds_id, rank

integer dims(2), sfcreate

C:

rank = 2

XL = 30

YL = 30

dims(l) = XL

dims(2) = YL

sds_id = sfcreate(sd_id, winds, DFNT_INTI6, rank, dims)

int32 sds id;

int32 dims[2], rank;

rank = 2;

XL = 30;

YL = 30;

dims[0] = YL;

dims[l] = XL;

sds_id = SDcreate(sd_id, winds, DFNT_INTI6, rank, dims);

32

7.4.7 Write existing data set/array to a new data array in a new HDF file

After initializing the API and defining the new HDF file and new HDF SDS to be

written to, the next step is to actually write the existing non-HDF data into

the HDF file by using the SDwritedata (sfwdata) command. This command is used to

write either all or part of the existing n-dimensional data set (termed a

"slab") into the sds id array with the same number of dimensions. In addition,

the size of each dimension of the data "slab" must be the same or smaller then

the corresponding dimension of the sds id. The SDwritedata/sfwdata command is

used in the following fashion:

ret=sfwdata (sds id, start, stride, edge, data) (FORTRAN)

or

ret=SDwritedata (sds id, start, stride, edge, data); (C)

It should be noted that there are two versions of the write routine in FORTRAN,

"sfwdata" is used for numeric data while "sfwcdata" is used for writing

character data

Where

sds id = the SDS id (identifier) determined and returned by using

SDcreate(sfcreate)

start = An array which identifies where in the SDS that the writing will

begin

The start array identifies the location or position in the SDS where the writing

of the data "slab" will begin. This array must have the same number of

dimensions (rank) as the SDS and can not be larger (in each dimension) then the

SDS array. The declaration of the start variables can be done at the top of the

program or just preceding the call of the sfwdata (SDwritedata) command. As an

example, to write the existing data set to the beginning of a new 2-dimensional

SDS the following must be specified:

start(l) = 0

start(2) = 0

FORTRAN)

Or

start[0] = 0; (C)

start[l] = 0;

If the user wishes to begin writing the data at a location other then the

beginning of the new data set, say at a first dimension (X) of 15, the

declarations would be:

start(1) = 15

start(2) = 0

(FORTRAN)

Or

33

start[0] = 15; (C)

start[l] = 0;

stride = An array specifying the interval between written values in each

dimension.

The stride argument specifies, for each dimension, the interval between

consecutive written values of the data set. In other words, how many array

locations are skipped with each writing of the data? Like the start array, the

stride argument is predefined before calling the sfwdata (SDwritedata) command,

either directly before the call or at the top of the program.

If the user does not wish to skip any array locations in a new 2-dimensional

SDS, the following is to be declared:

stride(l) = 1

stride(2) = 1

(FORTRAN)

or

stride(0) = i; (C)

stride(l) = i;

However, if the user wishes to skip every other X (dimension I) location, the

following would be used:

stride(l) = 2

stride(2) = 1

(FORTRAN)

or

stride(0) = 2; (C)

stride(l) = i;

edge = An array defining the number of data values to be written in each

dimension.

The edge array defines the number of data values/elements that will be written

along each dimension of the multi-dimensional SDS array. In plain terms, this

argument defines the size of the data slab (all or part of the data) to be

written to the new SDS array and each dimension.

edge must be specified for each dimension of the data set and SDS array, and can

not be larger then the entire length of the newly defined (from sfcreate) array

it is being written to.

The edge is affected by the stride. If stride = 2, then the edge will need to

be divided by two, because it will be writing to every other location along a

dimension.

Similar to stride and start, the edge argument needs to be defined prior to the

calling of the sfwdata (SDwritedata) command, whether it be at the top of the

program or directly before the routine call.

34

As an example, most often, the user will wish to write the entire non-HDF data

set into a new array that starts from the beginning and does not contain any

missing data or blanks. For a 2-dimensional array of 30X30, read and stored

into the data array "rwind", this can be done, in FORTRAN, by:

start(1) = 0

start(2) = 0

stride(1) = 1

stride(2) = 1

edge(1) = 30

edge(2) = 30

retn = sfwdata(sds id, start, stride, edges, rwind)

Or in C by:

Start[0] = 0;

Start[l] = 0;

Stride[0] = i;

Stride[l] = I;

Edge[0] = 30;

Edge[l] = 30;

retn = SDwritedata(sds id, start, stride, edges, rwind);

data = The array or buffer of data to be written

The file containing this data should be opened at the beginning of the program

and the data read in and stored into the necessary arrays before beginning the

HDF operations.

Example:

FOR TRAN:

c

c

c

integer start(2), edges(2), stride(2)

integer retn, XL, YL

integer sfwdata

Define the location, pattern and size of data set that

will be written to.

XL = 30

YL = 30

start(l) = 0

start(2) = 0

edge(l) = XL

edge(2) = YL

stride(l) = 1

stride(2) = 1

write the data

retn = sfwdata(sds id, start, stride, edges, rwind)

C:

35

int32 retn;

int32 start[2], edges[2], stride[2];

XL = 30;

YL = 30;

/*Define the location, pattern and size of the dataset*/

For (i=0; i⁢rank; i++) {

start[i] = 0;

edge[i] = dims[i];

edge(l) = 30;

/* Write the stored data to "newarray". The 5th argument must be

explicitly cast to a generic pointer to conform to the API

definition for SDwritedata */

retn = SDwritedata(sds_id, start, NULL, edges, (VCIDP)newarray);

7.4.8 Optional operation: Provide metadata for HDF files or data sets

Using the general attribute routines for user-defined attributes described in

section 6, attributes can be written and attached to the file itself, the data

set, and the dimension in question. This is not required, but up to the choice

of the user.

After opening the file and obtaining the file id (sd_id) using the

sfstart/SDstart command, the following can be done

7.4.8.1 FILE ATTRIBUTES:

To assign attributes to a file, the following command is used:

SDsetattr (sd id, attr_name, data_type, count, value); (C)

sfsnatt(sd_id, attr_name, data_type, count, value) (FORTRAN)

There are two FORTRAN versions of the routine, sfsnatt writes numeric attribute

data while sfcatt writes character attribute data.

Where

sd id= file identifier

attr name : ASCII string containing the name of the attribute (i.e., "file

contents")

data type = data type of attribute values (i.e., DFNT INT32)
count = total number values/characters in the attribute

value = text string or label

7.4.8.2 ARRAY ATTRIBUTES

After each data set identifier (sds_id) is obtained through the

SDselect/sfselect command, the following is used:

SDsetattr (sds_id, attr_name, data_type, count, value);

sfsnatt(sds_id, attr_name, data_type, count, value)

(C)

(FORTRAN)

where

36

sds id= data set identifier

rest as above

7.4.8.3 DIMENSION ATTRIBUTES

After getting the identifier for a dimension using the sfdimid/SDgetdimid

command, the following is used:

SDsetattr (dim id, attr name, data_type, count, value); (C)

sfsnatt (dim_id, attr_name, data_type, count, value) (FORTRAN)

where

dim id= Dimension identifier

rest as above

7.4.8.4 CLOSING ATTRIBUTES

After setting/writing the attributes, the user must terminate access to the data

array (using the SDendaccess/sfendacc commands) and the file and SD interface

(using the SDend/sfend commands).

Example:

i) FILE ATTRIBUTES:

FORTRAN:

sd id = sfstart("wind.hdf", DFACC RDWR)

rein = sfsattr(sd_id, "Contents of file", DFNT_CHAR8, 16,

"hori zontal winds")

C:

sd id=SDstart ("wind.hdf", DFACC RDWR);

retn = SDsetattr (sd id, "Contents of file", DFNT CHAR8, 16,

"horizontal winds ") ;

2) ARRAY ATTRIBUTES

FOR TRAN:

sds_id=sfselect (sd id, 0)

retn = sfsattr(sds_id, "format", DFNT_INT32, 4, "F8.2")

C:

sds id=SDselect(sd id, 0);

retn= SDsetattr (sds id, "format", DFNT_INT32, 4,

"F8.2");</PRE></DIR>

3) DIMENSION ATTRIBUTES

37

FOR TRAN:

dim id=sfdimid (sds id, 0)

retn = sfsattr(dim id, "dim metric", DFNT CHAR8, I0,

"meters/sec")</PRE_ -- --

C:

dim_id=SDgetdimid (sds id,0);

retn= SDsetattr (dim_id, "dim_metric", DFNT CHAR8, i0,

"meters/sec");</PRE></DIR>

7.4.9 Terminate / close access to all files, data sets, and APIs

After writing the data to the new SDS array within the new HDF file, it is

necessary to terminate or close access to the new data set in order to prevent

any possible loss of data. This is done by the following:

retn = sfendacc(sds id) (FORTRAN)

or

retn= SDendaccess(sds_id); (C)

In addition, the API called within the program must also be closed to prevent

any data loss:

retn = sfend(sd id) (FORTRAN)

or

retn = SDend(sd id) ; (c)

Example:

FOR TRAN :

integer sfendacc, sfend

retn = sfendacc(sds id)

retn = sfend(sd id)

C:

retn = SDendaccess(sds_id);

retn = SDend(sd id);

7.4.10 Execute program

Execute like a normal FORTRAN or C program.

38

8. Obtaining Information on Existing HDF Files

As mentioned previously, a single HDF file may contain more than one scientific

data set (or images, tables, etc.). Within the SD interface (and other

interfaces for the various data types), there are routines that can be called

within short programs, C or FORTRAN, which help the user do the following:

Determine the contents of an HDF file

Obtain information on individual data sets

Locate a Scientific Data Set (SDS) by name

8.1 Determine the contents of an HDF file

Before reading an HDF file, it might be necessary for the user to determine the

number of data sets within the file, and the attributes of the file itself.

After initializing and accessing the Application interface (in this case, the SD

and GR interfaces for, respectively, scientific data sets and images (with

associated palettes), this can be done using the following statements:

and

SDfileinfo(sd_id, n datasets, n file_attr); (C)

GRfileinfo(gr_id, n Tmages,nfile_attr)

sffinfo(sd id, n datasets, n file attr)

mgfinfo(gr_id, n Tmages,n_file_attr)

(FORTRAN)

where

sd id= file id number

gr_id = GR interface identifier
n datasets= Number of data sets within the file

n-file attr= number of file attribute

n_images = number of images within the file

8.2 Obtain information on individual data sets

Before reading a particular data set or image from an HDF file, the user may

need to know the rank, dimension sizes, data type, and number of attributes of

the data array.

After the user has initiated and accessed the interface (for example, the GR

interface for images and the SD interface for data arrays) and selected the data

set by using the sfselect/SDselect (data set) or mgselct/GRselect (image) in a

short FORTRAN (C) program, this information can be retrieved using the following

calls:

and

SDgetinfo (sds_id, name, rank, dim_sizes, num type, attributes);

GRgetinfo(ri_id, name,n_comps,data_type,interlace mode,dim_sizes,n_attrs)

(c)

sfginfo (sds_id, name, rank, dim_sizes, hum_type, attributes) (FORTRAN)

mgginf(ri_id, name,n_comps,data_type,interlace_mode,dim_sizes,n_attrs)

Where

39

sds id = data set id number

ri Td = raster image id number

name = name of corresponding data set

rank = rank of corresponding data set

dim sizes = dimensions of corresponding data set

hum_type = data type of corresponding data set

data type = data type of corresponding image

attributes = number of attributes of corresponding data set

n_comps = number of components

interlace mode = interlacing mode of data

n attrs = number of sttributes

8.3 Locate a Scientific Data Set (SDS) by name

In most cases, when a scientific data set is created, it is assigned a unique

identification number (or sds id) so that it can be located and accessed in the

future by using the sfselect (SDselect) calls in a FORTRAN (C) program. If no

sds id has been assigned, the id can be determined from the name of the data set

using the following statements:

sds_index = SDnametoindex(sd_id, sds_name); (C)

sds_id = SDselect(sd_id, sds index);

sds_index = sfn2index(sd_id, sds_name) (FORTRAN)

sds id = sfselect(sd_id, sds_index)

where

sds index = data set index number

sds name = data set name

sd Td = HDF file index number

4O

9. Reading Data from an HDF File

The following sections detail how a user may utilize the HDF library the SD API

within a computer program to write a data file in HDF. In this section, the

tutorial will concentrate on using the FORTRAN programming language and the SD

API. However, examples of the appropriate C code will also be given for certain

steps. For the purpose of this tutorial, we are choosing the example of reading

an entire data array that is the first and only data set in the HDF file.

Similar to writing an HDF file, the user should follow these simple steps:

Does the current version of HDF support your computer platform and

operating system?

Downloading and Installing the HDF library

Are all libraries and programs properly linked and compiled?

Writing a short program to read an HDF data set

9.1 Does the current version of HDF support your computer platform and operating

system?

As outlined in Section 3, the HDF library can not be run on just any available

computer platform or operating system. Before downloading the HDF library

software, the user should make sure that the current release of HDF supports

his/her computer and operating system. Otherwise, the user will be unable to

work with the HDF library and files. There is also a possibility that previous

releases of HDF may support the Users computer platform while the latest version

does not. In this event, the user may wish to obtain the earlier software.

9.2 Downloading and Installing the HDF library

The HDF library and software is public domain software and available free to all

users. The library and code can be downloaded from the NCSA anonymous ftp server

(ftp://ftp.ncsa.uiuc.edu/HDF/HDF/HDF Current). Directions on how to install the

HDF library can also be found at this location.

9.3 Are all libraries and programs properly linked and compiled?

In order to eventually run the HDF software, the library and the needed

application routines and programs must first be properly compiled and linked. As

of the current release of HDF (4.1r3), four separate libraries must be compiled

and linked. These are the libmfhdf.a, libdf.a, libjpeg.a, and libz.a libraries.

Provided below are examples of the command(s) that can be used for this action.

It must be noted that the order in which the libraries are linked is important

and should not vary from the order shown below:

For C programs:

cc -o ⁢your program> ⁢your program>.c \

-I⁢pathf for hdf include directory>\

-L⁢path for hdf libraries> -imfhdf -idf -ljpeg -iz

For FORTRAN programs:

f77 -o <your program> ⁢your program>.f \

-I⁢path for hdf include directory>\

41

-L⁢path for hdf libraries> -imfhdf -ldf -ljpeg -iz

For the various commandsneeded to link and compile the HDFlibrary on each
individual platform, please see Section 3- Compiling the HDFLibrary.

9.4 Writing a short program to read an HDF data set

9.4.1 Select a programming language

As mentioned previously, the HDF library and programs can only be run by using

either the C or FORTRAN programming language. This choice is up to the user

depending on availability and the language he or she feels most familiar and

comfortable with.

9.4.2 Make sure all include files are in place

Earlier, it was noted that a series of standard HDF definitions and declarations

of file access codes (i.e. read, write, etc.) and data types (i.e. integer,

character) must be included within the programs that the user writes to utilize

the various application routines. In the C programs, this is accomplished

simply by adding the line #include "hdf.h" at the beginning of the program.

This line effectively includes all the needed constants and definitions from the

HDF software. When writing FORTRAN programs, this may also be done by simply

adding an include statement that brings in only the needed definitions and

declarations (constants.f) from the hdf.h header file. This is done by the

following code: "include constants.f". However, all FORTRAN compilers

(particularly the older ones) do not support the use of include statements. In

this event, the user must type in/declare all the constants and definitions

found in the constants.f file. It is advised that all declarations, whether

through Include statements or not, should be done at the beginning of the

program.

9.4.3 Make all variables and parameter declarations

As with any program, the scientist/user should declare and initialize all

variables and parameters at the beginning of the program. This includes all

variables and arguments that will be used by the HDF commands to follow. The

variable and parameter declarations needed for each call will be provided in the

example boxes of the individual steps. These statements always belong at the top

of the program.

9.4.4 Initialize access to the SD interface and open HDF file

The first real HDF programming step actually accomplishes two things:

I) Opens the existing HDF file

2) Initializes and opens the SD interface.

This is done by the following command:

sd id = sfstart(filename, access mode)

or

(FORT RAN)

sd id = SDstart(filename, access mode): (C)

42

where

sd id = HDFfile id returned by the sfstart/SDstart command
filename = the nameof the existing HDFfile (character string)
access mode= Type of access required for this file

All available options for the access-modeargument are defined in the hdf.h
header file mentioned previously and need only to be identified for all C and
most FORTRANoperations. All options begin with the prefix "DFACC" and
include:

DFACCCREATE(File Creation Access)
DFACCRDONLY(ReadAccess)
DFACCRDWR(Readand Write Access)

These definitions are stated in the hdf.h header file.

In the event that the user's FORTRANcompiler can not handle include statements
with the header file (hdf.h), the DFACCvariable must be defined, along with
its assigned value, at the beginning of the program. This is done by a line of
code such as:

parameter (DFACCRDONLY= I) (For FORTRANonly)

Example:

FOR TRAN:

integer*4 sd id

integer sfstart

parameter(DFACC RDONLY = i)

sd id=sfstart("wind.hdf", DFACC RDONLY)

C:

#includehdf.h"

int32 sd id;

sd id=Sdstart("wind.hdf", DFACC RDONLY

9.4.5 Select data set to be read from the HDF file

After initializing the SD interface and opening and assigning a file id (sd_id)

to the HDF file to be used, the next step is to select the HDF Scientific Data

Set (SDS) which will be read. This is done by the following command:

sds_id = sfselect (sd_id, sds_index)

sds_id = SDselect (sd_id, sds_index)

(FORTRAN)

or

(c)

where

43

sds id = HDF SDS array id returned by the sfselect/SDselect command

sd id = the HDF file id created in the previous step (sfstart/SDstart)

sds index = index number of data set within file

(i.e. 0 = first data set, 1 = second data set, etc.)

Example:

FOR TRAN :

integer sds_id, sds_index, sd_id

integer sfselect

sds index = 0 represents the first data set

sds_id = sfselect(sd_id,0)

C:

int32 sd_id, dims [2] ;

dims[0] = YL;

dims[l] = XL;

sds id = Sdselect(sd_id, 0) ;

9.4.6 Read an existing data set/array

After initializing the API and selecting the HDF file and HDF SDS to be read to,

the next step is to actually read the existing HDF data by using the SDreaddata

(sfrdata command. This command is used to read either all or part of the

existing n-dimensional data set (termed a "slab") into the sds id array with the

same number of dimensions. In addition, the size of each dimension of the data

"slab" must be the same or smaller then the corresponding dimension of the

sds id. The SDreaddata/sfrdata command is used in the following fashion:

ret=sfrdata (sds id, start, stride, edge, data) FORTRAN)

or

ret=SDreaddata (sds id, start, stride, edge, data); C)

It should be noted that there are two versions of the read routine in FORTRAN.

The sfrdata routine reads numeric scientific data while sfrcdata reads character

scientific data

sds id = the SDS id (identifier) determined and returned by using SDcreate

or SDselect (sfcreate/sfselect)

start = An array which identifies where in the SDS that the writing will

begin

The start array identifies the location or position in the SDS where the reading

of the data "slab" will begin. This array must have the same number of

dimensions (rank) as the SDS and can not be larger (in each dimension) then the

SDS array. The declaration of the start variables can be done at the top of the

44

program or just preceding the call of the sfrdata (SDreaddata) command. As an
example, to read the existing data set to the beginning of a new 2-dimensional
SDSthe following must be specified:

start(l) = 0
start(2) = 0

FORTRAN)

or

start[0] = 0; (C)

start[l] = 0;

If the user wishes to begin reading the data at a location other then the

beginning of the data set, say at a first dimension (X) of 15, the declarations

would be:

start(l) = 15

start(2) = 0

(FORTRAN)

or

start[0] = 15; (C)

start[l] = 0;

stride = An array specifying the interval between written values in each

dimension.

The stride argument specifies, for each dimension, the interval between

consecutive written values of the data set. In other words, how many array

locations are skipped with each reading of the data. Like the start array, the

stride argument is predefined before calling the sfrdata (SDreaddata) command,

either directly before the call or at the top of the program.

If the user does not wish to skip any array locations in a new 2-dimensional

SDS, the following is to be declared:

stride(l) = 1

stride(2) = 1

(FORTRAN)

or

stride[0] = I; (C)

stride[l] = I;

However, if the user wishes to skip every other X (dimension I) location, the

following would be used:

stride(l) = 2

stride(2) = 1

(FORTRAN)

or

stride[0] = 2;

stride[l] = I;

c)

edge = An array defining the number of data values to be read in each dimension.

45

The edge array defines the numberof data values/elements that will be read
along each dimension of the multi-dimensional SDSarray. In plain terms, this
argument defines the size of the data slab (all or part of the data) to be
written to the new SDSarray and each dimension.

The parameter edge must be specified for each dimension of the data set and SDS
array, and can not be larger then the entire length of the array being read.

Similar to stride and start, the edge argument needs to be defined prior to the
calling of the sfrdata (SDreaddata) command,whether it be at the top of the
program or directly before the routine call. The file containing this data
should be opened at the beginning of the program and the data read in and stored
into the necessary arrays before beginning the HDFoperations.

As an example: Most often, the user will wish to read an HDFfile which contains
one data set (winddata), which starts from the beginning and does not contain
any missing data or blanks.

For a 2-dimensional array of 30X30, read and stored into the data array
"testdata", this can be done by:

start(1) = 0 (FORTRAN)

start(2) = 0

stride(1) = 1

stride(2) = 1

edge(1) : 30

edge(2) = 30

retn = sfrdata(sds id, start, stride, edges, winddata)

or

start[0] = 0; (C)

start[l] = 0;

stride[0] = I;

stride[0] = i;

edge[0] = 30;

edge[l] = 30;

retn = SDreaddata(sds id, start, stride, edges, winddata) ;

Example:

For reading the entire data set from an HDF file which contains only one 2-D

array:

FOR TRAN:

integer start(2), edges(2), stride(2)

integer retn sfrdata

Define the location, pattern + size of data to be read

YL = 30

XL : 3O

start(1) = 0

start(2) = 0

stride(1) = 1

stride(2) = 1

46

C:

edge(1) = XL

edge(2) = YL

retn = sfrdata(sds_id, start,stride,edges,winddat)

/* Define the location, pattern + size of data to be read */

YL = 30;

XL = 30 ;

dims[0] = YL;

dims[l] = XL;

start[0] = 0;

start[l] = 0;

stride[0] = I;

stride[l] = I;

edge[0] = dims[0] ;

edge[l] = dims[l] ;

retn = SDreaddata(sds_id, start,stride,edges,winddat);

9.4.7 Write non-HDF data to a file

Using standard FORTRAN and C statements for writing, the non-HDF data is written

into a new file (storage). In addition, the user may wish to print out all or

parts of the HDF data set to view the data or as a check of the

procedure/operation.

9.4.8 Optional operation: Get and Read Metadata

After opening the HDF file using the sfstart/SDstart, the first step is to

see if the file or data sets do indeed contain attributes. This is done by

using the following command:

attr_index = SDfindattr (sd_id, attr_name);

attr_index = sffattr (sd id, attr_name)

(c)

(FORTRAN)

where

attr index = valid attribute index returned if attribute exists

sd id = file identifier

attr name = name of attribute (i.e.,Contents of file")

If there is a attribute index, the name, data type (num_type), and count (number

of characters) of the attribute can be obtained:

retn= SDattrinfo(sd_id, attr_index, attr_name, num_type, count); (C)

retn= sfgainfo (sd_id, attr_index, attr_name, hum type, count) (FORTRAN)

After completing these operations, the attributes can be read using the

following

retn= SDreadattr (sd_id, attr_index, buffer);

retn= sfrattr (sd_id, attr_index, buffer)

(C)

(FO RT RAN)

where

47

buffer is allocated to hold the attribute data

The above steps can also be followed for each data set within the file by
getting the data set id (sds id) of the data, finding a particular attribute
(i.e.,"Units") and getting and reading the data.

Example:

FORTRAN:

sd id=sfstart ("wind.hdf", DFACC RDONLY)

attr index= sffattr (sd id,"file_contents")

retn= sfgainfo (sd id, attr index, "file contents", data type, count)

retn= sfrattr (sd id, attr index, buffer)

and

sds id=sfselect (sd_id, 0)

attr_index= sffattr (sds_id,"units")

retn: sfgainfo (sds_id, attr index,"units", data type, count)

retn= sfrattr (sds id, attr_index, buffer)

C:

sd_id=SDstart ("wind.hdf", DFACC RDONLY);

attr index= SDfindattr (sd id,"file contents");

retn= SDattrinfo (sd id, attr index,"file contents", data type, count);

retn= SDreadattr (sd_id, attr_index, buffer);

and

sds id=SDselect (sd id, 0);

attr index = SDfindattr (sds id,"units");

retn= SDattrinfo (sds id, attr index,"units", data type, count);

retn= SDreadattr (sds_id, attr index, buffer);

9.4.9 Terminate/Close access to all files, data sets, and APIs

After writing the data to the new SDS array within the new HDF file, it is

necessary to terminate or close access to the new data set in order to prevent

any possible loss of data. This is done by the following:

retn = sfendacc(sds id) (FORTRAN)

or

retn = SDendaccess(sds id) {c)

In addition, the API called within the program must also be closed to prevent

any data loss:

retn = sfend(sd_id) (FORTRAN)

or

48

retn = SDend(sdid) (C)

Example:

FOR TRAN:

integer sfendacc, sfend

retn= sfendacc(sds_id)

retn = sfend(sd id)

C:

retn = SDendaccess(sds id);

retn = SDend(sd id);

9.4.10 Execute program

Execute like a standard FORTRAN or C program

49

i0. Example Programs for Dealing with

Scientific Data Sets (SDS) in HDF

The following is a list of sample programs that illustrate how the HDF library,

and the SD API, can be used to work with HDF files. The example programs are

given in the FORTRAN programming language. However, the detailed steps for both

C and FORTRAN are the same. Only the syntax code particular to each language

should be different. The following example programs are provided:

I) Writing an SDS in HDF

2) Writing Attributes in HDF

3) Writing the SDS and attributes in HDF

4) Reading an HDF file

5) Reading HDF attributes (files and data sets)

i0.I Writing an SDS in HDF

FORTRAN:

PROGRAM WRITDATA

C

C

C

C

C

C

C

C

C

C

C

C

C

C

integer*4 sd_id, sds_id, rank

integer*4 XL, YL

integer dims(2), start (2), edges (2), stride (2)

integer i, j, k, retn

integer sfstart, sfcreate, sfwdata, sfendacc, sfend

real rwind(30, 30)

DFACC CREATE and DFNT INTI6 are defined in hdf.h but may have

to be-defined within the program for certain FORTRAN compilers

integer*4 DFACC CREATE, DFNT INTI6

parameter (DFACC CREATE = 4, DFNT INT16=22)

rank = 2

XL = 30

YL = 30

Create and open a new HDF file and initiate the SD interface

sd id = sfstart('wind.hdf', DFACC CREATE)

Define the rank (number of dimensions) and dimensions (size) of the

HDF Scientific Data Set (SDS) to be created.

dims(l) = XL

dims(2) = YL

Create the HDF SDS (sfselect would be used if writing to an

existing HDF file or data set)

sds id = sfcreate(sd id, 'winds', DFNT INTI6, rank, dims)

C

C Open and read the existing non-HDF data set into an array (rwind)

5O

Open (unit=10, file='wind.dat', form='formatted')

12

Do j = 1,30
Read(10, 12) (rwind(i, j),i = 1,30)
Format(30(f4.1,1x))

Enddo

Define where in the file to write the data set (start--location),
the pattern of the data (stride--skip any values??), and the size
of the data set (edges) to be written to. This is done for each
dimension, start(x) = 0 is for writing at the beginning of the
newly created SDSand stride(x) = 1 signifies that no data is to
be skipped in the writing.

start(l) = 0
start(2) = 0
edges(l) = XL
edges(2) = YL
stride(l) = 1
stride(2) = 1

Write the stored data (in the array rwind) to the new SDS

retn= sfwdata(sds_id, start, stride, edges, rwind)

Terminate access to the array

retn = sfendacc(sds id)

Terminate access to the SDinterface and close the HDFfile

retn = sfend(sd id)

Stop
End

10.2 Writing Attributes in HDF

FOR TRAN :

PROGRAM WRITEATT

C

C

C

C

C

C

C

C

integer*4 sd id, sds id, dim id, retn

integer dims(2), start(2), edges(2), stride(2)

integer sfstart, sfselect, sfdimid, sfscatt, sfendacc, sfend

DFACC RDWR, DFNT INTI6 and DFNT CHAR8 are defined in hdf.h but

may have to be defined within the program for certain FORTRAN

compilers

integer*4 DFACC_RDWR, DFNT_INT32, DFNT_CHAR8

parameter (DFACC RDWR = 3, DFNT_INTI6 : 22, DFNT CHAR8 = 4)

Open the HDF file, initiate the SD interface, and get the

identifier for the file

5!

C

C
C
C

C
C
C
C

C
C
C
C

C
C
C

C
C
C

sd id = sfstart('wind.hdf', DFACCRDWR)

Set an attribute the describe the contents of the file

retn = sfscatt(sd_id, 'file contents', DFNT_CHAR8, 15,

+ 'lidar LOS wTnds')

Get the identifier for the first data set (in this example, the

only data set)

sds id = sfselect(sd id, 0)

Set an attribute(s) for the data array itself. In this example, the

units of the data are defined

retn = sfscatt(sds_id, 'units', DFNT_CHAR8, 13, 'units = m/sec')

Terminate access to the data array

retn = sfendacc(sds id)

Terminate access to the SD interface and close the HDF file

retn = sfend(sd id)

Stop

End

10.3 Writing the SDS and attributes in HDF

FOR TRAN:

PROGRAM WRITESDS

C

C

C

C

C

C

C

C

integer*4 sd_id, sds_id, rank, dim_id

integer*4 XL, YL

integer dims(2), start(2), edges(2), stride(2)

integer i, j, k, retn

integer sfstart, sfcreate, sfwdata, sfendacc, sfscatt, sfend

real rwind(30, 30)

DFACC_CREATE, DFACC_RDWR, DFNT CHAR8 and DFNT_INTI6 are defined

in hdf.h but may have to be defined within the program for certain

FORTRAN compilers

integer*4 DFACC_CREATE, DFNT_INTI6, DFNT_CHAR8, DFACC RDWR

parameter (DFACC_CREATE = 4, DFACC_RDWR = 3, DFNT_INTY6 = 22,

+ DFNT CHAR8 = 4)

rank = 2

XL = 30

YL = 30

Create and open a new HDF file and initiate the SD interface

sd id = sfstart('wind.hdf', DFACC CREATE)

52

C
C
C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Define the rank (number of dimensions) and dimensions (size) of the

HDF Scientific Data Set (SDS) to be created.

dims(1) = XL

dims(2) = YL

Create the HDF SDS (sfselect would be used if writing to an

existing HDF file or data set)

sds id = sfcreate(sd id, 'winds', DFNT_INTI6, rank, dims)

Open and read the existing non-HDF data set into an array (rwind)

Open (unit = i0, file = 'wind.dat', form = 'formatted')

12

DO j=l, 30

Read (I0, 12) (rwind(i, j),i=l,30)

Format (30(f4.1,1x))

enddo

Define where in the file to write the data set (start--location),

the pattern of the data (stride--skip any values??), and the size

of the data set (edges) to be written to. This is done for each

dimension, start(x) = 0 is for writing at the beginning of the

newly created SDS and stride(x)=l signifies that no data is to be

skipped in the writing.

start(1) = 0

start(2) = 0

edges(1) = XL

edges(2) = YL

stride(1) = 1

stride(2) = 1

Write the stored data (in the array rwind) to the new SDS

retn= sfwdata(sds id, start, stride, edges, rwind)

For writing attributes, set an attribute the describe the

contents of the file

retn= sfscatt(sd id, 'file contents', DFNT CHARS, 15,

+ 'lidar LOS winds')

Set an attribute(s) for the data array itself. In this example, the

units of the data are defined

retn = sfscatt(sds_id, 'units', DFNT_CHAR8, 13, 'units = m/sec')

Terminate access to the data array

retn = sfendacc(sds id)

Terminate access to the SD interface and close the HDF file

retn = sfend(sd id)

53

Stop

End

10.4 Reading an HDF file

FOR TRAN :

PROGRAM READDATA

C

C

C

C

C

C

C

C

C

integer*4 sd_id, sds_id

integer*4 XL, YL

integer start(2), edges(2), stride(2)

integer i, j, k, retn

integer sfstart, sfselect, sfrdata, sfendacc, sfend

real rwind(30, 30)

DFACC RDONLY is defined in hdf.h but may have to be defined

within the program for certain FORTRAN compilers

integer*4 DFACC RDONLY

parameter (DFACC RDONLY = i)

MAX NC NAME (maximum # of characters) and MAX VAR DIMS (maximum

of dimensions) are defined in netcdf.h but may have to be defined

here.

integer*4 MAX NC NAME, MAX VAR DIMS

parameter (MAX NC NAME = 256, MAX VAR DIMS = 32)

integer dims(MAX VAR DIMS)

XL = 30

YL = 30

Open the HDF file and initiate the SD interface

sd id = sfstart('wind.hdf', DFACC RDONLY)

Select the first data set in the file (In this example, the only

dataset).

sds_id = sfselect(sd id, 0)

To read from the data set, define the location (start--where in the

file), the pattern (stride--skip any values??),and the size(edges)

of the data. This is done for each dimension, start(x) = 0 is for

reading at the beginning of the file and stride(x) = 1 signifies

that no data is to be skipped in the reading.

dims(l) = XL

dims(2) = YL

start(l) = 0

start(2) = 0

stride(l) = 1

stride(2) = 1

edges(l) = dims(l)

54

12

C
C
C

C
C
C

edges(2) = dims(2)

Readthe array dataset

retn= sfrdata(sds_id, start, stride, edges, rwind)

Optional - Print out data (ASCII) read from the HDFfile
In this example we are writing to the screen (*)

Do j = i, 30
write(*,12) (rwind(i,j),i=l,30)
format(30(f4.1,1x))

enddo

Terminate access to the array

retn = sfendacc(sds id)

Terminate access to the SDinterface and close the HDFfile

retn = sfend(sd id)

Stop
End

10.5 Reading HDF attributes (files and data sets

FOR TRAN:

PROGRAM READATTR

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

integer*4 sd_id, sds id, units_buffer

integer attr_index, data_type, count, retn

character attr name * 13

character char buffer * 20

integer sfstart, sfrnatt, sfrcatt, sfgainfo, sffatr, sfselect

integer sfendacc, sfend

DFACC RDWR is defined in hdf.h but may have to be defined

within the program for certain FORTRAN compilers

integer*4 DFACC_RDWR, DFACC RDONLY

parameter (DFACC RDWR = 3, DFACC RDONLY = 4)

Open the HDF file and initiate the SD interface

sd_id = sfstart('wind.hdf', DFACC RDONLY)

Select the first data set in the file (In this example, the only

dataset).

sds_id= sfselect(sd_id, 0)

Find the attribute which describes the contents of the file

(usually 'file contents')

attr_index = sffattr(sd_id, 'file_contents')

55

C
C
c

C
C
C

C
C
C

c
C
c

c
c
c

Get information about the file attribute

retn = sfgainfo(sd_id, attr_index, attr_name, data_type, count)

Readthe file attribute data

retn= sfrcatt(sd_id, attr index, char_buffer)

Readthe attributes for the first data set. First step is to get
the identifier.

sds id = sfselect(sd_id, 0)

Find the attribute which defines the units of the data set
('units')

attr_index = sffattr(sds id, 'units')

Get information about the data set attribute

retn = sfgainfo(sds_id, attr_index, attr_name, data_type, count)

Readthe data set attribute data

retn = sfrcatt(sds id, attr_index, units buffer)

Terminate access to the array

retn = sfendacc(sds_id)

Terminate access to the SDinterface and close the HDFfile

retn = sfend(sd id)

Stop
End

56

Ii. Browsing and Visualizing HDF Data

With the recent explosion of data volumes, numerous visualization and browsing

tools have been developed which allow users to quickly view the contents of data

sets created elsewhere. This has proven especially beneficial for users of HDF.

In fact, many visualization tools have been created specifically with HDF in

mind. The NCSA anonymous ftp server provides a set of free software that enables

the user to visualize and browse HDF files. Tools include the JAVA-based HDF

Browser (http://hdf.ncsa.uiuc.edu/java-hdf-htm]) and the Scientific Data Browser

(http://hdf.ncsa.uiuc.edu/sdb/sdb.html). In addition, the following are

available but have not been updated to run with the current version of HDF: NCSA

Collage, NCSA Datascope, NCSA XDataSlice, and NCSA Polyview.

Besides NCSA, there are other sites and centers that also provide public domain

(free) software that can be used to browse and visualize HDF files. This

software includes, among others: LinkWinds, WebWinds, GRASS, FREEFORM, VISTAS,

ImageMagick, and Envision. Visualization tools and software such as LinkWinds

and EOSView (http://edhsl.gsfc.nasa.gov/waisdata/toc/tp4450601toc.html) can be

used for working with HDF-EOS type data (point, swath and grid data sets).

Finally, there are also commercial (for a fee) software packages that can be

used to work with and browse HDF files. These include: DataExplorer, Spyglass,

PV-Wave, Wavefront, IDL, AVS, IRIS Explorer, Transform, and ER Mapper.

Please see Section 4: HDF Browsing and Visualization Tools for further detail,

including internet addresses, on the above software.

57

12. HDF Laboratory

Due to the interactive nature of the Question and Answer session, the questions

are not provided in this version of the tutorial, but may be viewed in the HTML

version at http://cyclone.swa.com/meteorology/hdf/tutorial/welcome.html. However,

a brief overview is provided below. The following are the general sections that

are covered by the Laboratory:

Section I: General Background: HDF and the HDF Library (1-9)

Section II: Methods of Working with HDF Files (10-16)

Section III: Scientific Data Model (17-20)

Section IV: Attributes and Metadata(21-25)

Section V: Using the SD API to write an Existing Data Set in HDF

(26-36)

Section VI: Querying /and Reading an HDF File (37-39)

12.1 Lab Directions

The question and answer section of the tutorial was developed in Java script and

is best viewed using the latest releases of Microsoft Internet Explorer

(http://microsoft.com/windows/ie/default.htm) and Netscape navigator

(http://home.de.netscape.com/). When navigating through the tutorial, individual

questions will be loaded on the same window and will be controlled by the

"Previous question" and "next question" buttons. However, new windows will be

opened when the user attempts to look at the preview material for each question

and thus allowing the user to toggle back and forth from the question and the

material. To exit the tutorial, just click the "back" from the main question

screen and this will bring the user back to the Laboratory menu. When done with a

"preview" window, simply close out the window and return to the question

window/screen.

In this section we provide a series of questions designed for the users of the

tutorial to test themselves on how well they understood the material presented

in the tutorial and, more importantly, to gauge how comfortable they feel with

HDF.

The questions more or less follow the order of the topics covered in the

"Lecture" component of the tutorial. The Laboratory menu provides a breakdown by

section of the various questions, and allows the user to select which topics

they would like to focus their attention on.

Each question contains the question itself, a set of possible answers,

navigation buttons ("Next Question", "Previous Question", "Lab Menu", "End Lab",

"Submit Answer") and, most importantly, a feature which allows the user to

review material pertaining to the question before answering or after answering

incorrectly. This is done by selecting the "Preview Material" button. Since

some users will like to take the "test" without any help and others will like to

58

review material before answering (particularly those who may have skipped

directly to the Laboratory), it is up to the individual user to decide how

to proceed.

It should be noted that, in many cases, there is more than one correct answer

for each individual question. The user is allowed to select more than one

response and will only receive an "Answered Correctly" response if ALL correct

responses have been selected.

To help the users gauge their understanding of HDF and how well they are

answering the questions, a "performance gauge" is provided in the upper right

hand corner of each question. This gauge provides both a numerical (i.e. 7 of

II) and graphical (sliding color bar for 0 - 100%) representation of user

performance. The "score" found in the performance gauge only reflects the

users' initial answer to each question.

The user's performance in the Laboratory is further diagnosed in a Progress

Report reached by clicking on the performance gauge. Included in this report

are:

number of questions answered correctly

number of questions answered incorrectly

number of questions left unanswered

list of questions answered correctly

list of questions answered incorrectly

list of questions left unanswered

59

13. ACRONYM LIST

API

EOS

EOSDIS

ESDIS

FAQ

GB

HDF

HDF-EOS

JHI

NASA

NCSA

SD

SDS

SWA

Application Programming Interface

Earth Observing System

EOS Data and Information System

Earth Science Data and Information System

Frequently Asked Questions

Giga-Byte

Hierarchical Data Format

Hierarchical Data Format - Earth Observing System

Java HDF Interface

National Aeronautics and Space Administration

National Center for Supercomputer Applications

Scientific Data

Scientific Data Set

Simpson Weather Associates

1FIDF Laborato[- Mic,osoft Intemet E_ _loier

E_ _ _ Fm,=i_ X_ ;¸ • -

Fotv,,ard _ Relimh _ F,eM:llm Hi,era, Chn,_lFdlnm.

................. ,, , ,,, , n

SEC'_IONi'QUESTION 9

40f7

,--,,--I

I I--I--i--IdI',,_,_=_

_'HDF Laboratoky-Mic,o_oltInterne!Ex:_lolef

J.m, _,= _.* ao Fe,_ .,., " _ =

Back Fo_ard Stop RIheIh _ S,-,_ F,,,=_ _ _ I ----Fulm,m'_

L_ _de=W_ i_lO,-_Q,,",,_C,,,=_Li.k. ,E1,,*.,',=e,_,,.N.,,.._,,_,=,_S_t
.... *= r r I , ,,,,, I

SECT!Olt#QUIESTION10

1ot2

r _ uliti_

r _ =llll_u,e,

F" M_ Ihed)ov_

i_ 1| I I] al I_ m] nlf,] t,m.'. I[_] [I}._[I] 111IT/[_ i I[_l i'ql [I](_

Back Fo_wa+d Se,emh Favodl_ "

Like _BmtdlteWob l_lO'a'ndG.il:ie _)_Li'k, _lnltMnolEttl_lmm'New_ _h'ttmmMSkatt

SECTIONH QUESTION14

4M7

o..

r" allowIheuomto cal HDFiq_piolm, t_ oul:_bd C oeFodfmrpmgrarm.

r- dow iI_ u,meIo pedo_ cammareopetaliomonHDFlib&

I'- emavdeblefmd ecliomand_ coveredI_ 1heAPIt.

Eb E_ _ 1io F_ b4e

Back For_._,,ard
F_ ,._ +-- _+;+--- ..,-

_ e_ I_ httP://cgckx_e,swa.comhneteorolo_,,1,1diltutoriWQue_ior_ht_

I.inl_ __eest of theWeb _]_ 5zide i_]_ L_. _]lnZmn_ Explo_ N-- _lntem_ Stat
i

SECTION IV QUESTION 22

50f8

A.'mm.l;dJ

Back For,/_a_d Sbl Re_eh Home i Sean:h Favmitm _ Cham_] Fulbx:mm

jl.inl_ _']BeztdlheWeb _(]ImmlBuide _]CuztommLinks t_]lntem_E_tecNem _lrdxetStalt

Progress Report forthe HDF Laboratory

N.._ of_ amm_ oo.ec_: 5 lZO_

N..ta of_ mmmd h:em_. 3 ;'.(IX

NuMberoi=quelSmwle_mmmemd: 31 7'9.0_

Bek)wisthetiltorque_io_ anmemdcentre.
2.3.4.9.16.

Belowk _e i_ el que_io_ _ _

5.7.8.

Be4owi=e,l,e_ o__ le_t_

1o6.10o11.12.13.14.15.17. lB. 15.2o,,21.22. 23o24.25,.2So27.28. 28.3o.:31.
32.33.34.35.36.3"/.38.39.

...,,o..,I

